Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Feb 1;92(2):277–282. doi: 10.1083/jcb.92.2.277

Enzymatic basis for a lectin-resistant phenotype: increase in a fucosyltransferase in mouse melanoma cells

PMCID: PMC2112079  PMID: 6895897

Abstract

In the search for the biochemical basis of the control of glycosylation of cell surface carbohydrates, revertant clones were isolated from previously characterized wheat germ agglutinin-resistant clones of B16 mouse melanoma cells by selection for resistance to Lotus tetragonolobus lectin or to ricin. Comparison of the wheat germ agglutinin-resistant clones with the parent and revertant clones indicated that this phenotype was correlated with an increased sensitivity to the Lotus lectin, a 60- to 70-fold increase in alpha 1 leads to 3 fucosyltransferase activity and a decreased sialic acid content of the N-glycosidic chains of glycoproteins. The results suggest a novel type of control mechanism for lectin resistance, an increase in a glycosyltransferase activity. The presence of alpha 1 leads to 3 bound fucose on N-acetylglucosamine residues would interfere with the addition of sialic acid by alpha 2 leads to 3 linkages to galactose residues in the carbohydrate units, and this change could explain the resistance to wheat germ agglutinin and the increased sensitivity to the Lotus lectin. A change in a regulatory gene for the fucosyltransferase as a possible primary cause for the changed phenotype is discussed.

Full Text

The Full Text of this article is available as a PDF (662.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballmer K., Mannino R. J., Burger M. M. Modulation of the cell cycle during reversible growth inhibition of 3T3 and SV40-3T3 cells with succinylated concanavalin A. Exp Cell Res. 1980 Apr;126(2):311–319. doi: 10.1016/0014-4827(80)90269-4. [DOI] [PubMed] [Google Scholar]
  2. Bhavanandan V. P., Katlic A. W. The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J Biol Chem. 1979 May 25;254(10):4000–4008. [PubMed] [Google Scholar]
  3. Briles E. B., Li E., Kornfeld S. Isolation of wheat germ agglutinin-resistant clones of Chinese hamster ovary cells deficient in membrane sialic acid and galactose. J Biol Chem. 1977 Feb 10;252(3):1107–1116. [PubMed] [Google Scholar]
  4. Carlsson H. E., Lönngren J., Goldstein I. J., Christner J. E., Jourdian G. W. The interaction of wheat germ agglutinin with keratan from cornea and nasal cartilage. FEBS Lett. 1976 Feb 1;62(1):38–40. doi: 10.1016/0014-5793(76)80011-7. [DOI] [PubMed] [Google Scholar]
  5. Fidler I. J. Selection of successive tumour lines for metastasis. Nat New Biol. 1973 Apr 4;242(118):148–149. doi: 10.1038/newbio242148a0. [DOI] [PubMed] [Google Scholar]
  6. Finne J. Identification of the blood-group ABH-active glycoprotein components of human erythrocyte membrane. Eur J Biochem. 1980 Feb;104(1):181–189. doi: 10.1111/j.1432-1033.1980.tb04414.x. [DOI] [PubMed] [Google Scholar]
  7. Finne J., Krusius T. Preparation and fractionation of glycopeptides. Methods Enzymol. 1982;83:269–277. doi: 10.1016/0076-6879(82)83020-6. [DOI] [PubMed] [Google Scholar]
  8. Finne J., Krusius T. Structural features of the carbohydrate units of plasma glycoproteins. Eur J Biochem. 1979 Dec 17;102(2):583–588. doi: 10.1111/j.1432-1033.1979.tb04275.x. [DOI] [PubMed] [Google Scholar]
  9. Finne J., Tao T. W., Burger M. M. Carbohydrate changes in glycoproteins of a poorly metastasizing wheat germ agglutinin-resistant melanoma clone. Cancer Res. 1980 Jul;40(7):2580–2587. [PubMed] [Google Scholar]
  10. Gottlieb C., Baenziger J., Kornfeld S. Deficient uridine diphosphate-N-acetylglucosamine:glycoprotein N-acetylglucosaminyltransferase activity in a clone of Chinese hamster ovary cells with altered surface glycoproteins. J Biol Chem. 1975 May 10;250(9):3303–3309. [PubMed] [Google Scholar]
  11. Gottlieb C., Kornfeld S. Isolation and characterization of two mouse L cell lines resistant to the toxic lectin ricin. J Biol Chem. 1976 Dec 25;251(24):7761–7768. [PubMed] [Google Scholar]
  12. Green R. F., Meiss H. K., Rodriguez-Boulan E. Glycosylation does not determine segregation of viral envelope proteins in the plasma membrane of epithelial cells. J Cell Biol. 1981 May;89(2):230–239. doi: 10.1083/jcb.89.2.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Higgins T. J., Liu D. Y., Remold H. G., David J. R. Further characterization of the putative glycolipid receptor for MIF: role of fucose associated with an acidic glycolipid. Biochem Biophys Res Commun. 1980 Apr 29;93(4):1259–1265. doi: 10.1016/0006-291x(80)90625-7. [DOI] [PubMed] [Google Scholar]
  14. Krusius T., Finne J. Characterization of a novel sugar sequence from rat-brain glycoproteins containing fucose and sialic acid. Eur J Biochem. 1978 Mar 15;84(2):395–403. doi: 10.1111/j.1432-1033.1978.tb12180.x. [DOI] [PubMed] [Google Scholar]
  15. Margolis R. K., Margolis R. U. Extractability of glycoproteins and mucopolysaccharides of brain. J Neurochem. 1973 Apr;20(4):1285–1288. doi: 10.1111/j.1471-4159.1973.tb00099.x. [DOI] [PubMed] [Google Scholar]
  16. Meager A., Ungkitchanukit A., Nairn R., Hughes R. C. Ricin resistance in baby hamster kidney cells. Nature. 1975 Sep 11;257(5522):137–139. doi: 10.1038/257137a0. [DOI] [PubMed] [Google Scholar]
  17. Narasimhan S., Stanley P., Schachter H. Control of glycoprotein synthesis. Lectin-resistant mutant containing only one of two distinct N-acetylglucosaminyltransferase activities present in wild type Chinese hamster ovary cells. J Biol Chem. 1977 Jun 10;252(11):3926–3933. [PubMed] [Google Scholar]
  18. Neal M. W., Florini J. R. A rapid method for desalting small volumes of solution. Anal Biochem. 1973 Sep;55(1):328–330. doi: 10.1016/0003-2697(73)90325-4. [DOI] [PubMed] [Google Scholar]
  19. Paulson J. C., Prieels J. P., Glasgow L. R., Hill R. L. Sialyl- and fucosyltransferases in the biosynthesis of asparaginyl-linked oligosaccharides in glycoproteins. Mutually exclusive glycosylation by beta-galactoside alpha2 goes to 6 sialyltransferase and N-acetylglucosaminide alpha1 goes to 3 fucosyltransferase. J Biol Chem. 1978 Aug 25;253(16):5617–5624. [PubMed] [Google Scholar]
  20. Pereira M. E., Kabat E. A. Specificity of purified hemagglutinin (lectin) from Lotus tetragonolobus. Biochemistry. 1974 Jul 16;13(15):3184–3192. doi: 10.1021/bi00712a029. [DOI] [PubMed] [Google Scholar]
  21. Prieels J. P., Beyers T., Hill R. L. Human milk fucosyltransferases [proceedings]. Biochem Soc Trans. 1977;5(4):838–839. doi: 10.1042/bst0050838. [DOI] [PubMed] [Google Scholar]
  22. Prieels J. P., Pizzo S. V., Glasgow L. R., Paulson J. C., Hill R. L. Hepatic receptor that specifically binds oligosaccharides containing fucosyl alpha1 leads to 3 N-acetylglucosamine linkages. Proc Natl Acad Sci U S A. 1978 May;75(5):2215–2219. doi: 10.1073/pnas.75.5.2215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rauvala H. Gangliosides of human kidney. J Biol Chem. 1976 Dec 10;251(23):7517–7520. [PubMed] [Google Scholar]
  24. Rearick J. I., Sadler J. E., Paulson J. C., Hill R. L. Enzymatic characterization of beta D-galactoside alpha2 leads to 3 sialyltransferase from porcine submaxillary gland. J Biol Chem. 1979 Jun 10;254(11):4444–4451. [PubMed] [Google Scholar]
  25. Reitman M. L., Trowbridge I. S., Kornfeld S. Mouse lymphoma cell lines resistant to pea lectin are defective in fucose metabolism. J Biol Chem. 1980 Oct 25;255(20):9900–9906. [PubMed] [Google Scholar]
  26. Robertson M. A., Etchison J. R., Robertson J. S., Summers D. F., Stanley P. Specific changes in the oligosaccharide moieties of VSV grown in different lectin-resistnat CHO cells. Cell. 1978 Mar;13(3):515–526. doi: 10.1016/0092-8674(78)90325-2. [DOI] [PubMed] [Google Scholar]
  27. Schwyzer M., Hill R. L. Porcine A blood group-specific N-acetylgalactosaminyltransferase. J Biol Chem. 1977 Apr 10;252(7):2346–2355. [PubMed] [Google Scholar]
  28. Stanley P., Caillibot V., Siminovitch L. Selection and characterization of eight phenotypically distinct lines of lectin-resistant Chinese hamster ovary cell. Cell. 1975 Oct;6(2):121–128. doi: 10.1016/0092-8674(75)90002-1. [DOI] [PubMed] [Google Scholar]
  29. Tao T. W., Burger M. M. Non-metastasising variants selected from metastasising melanoma cells. Nature. 1977 Dec 1;270(5636):437–438. doi: 10.1038/270437a0. [DOI] [PubMed] [Google Scholar]
  30. Wright J. A. Evidence for pleiotropic changes in lines of Chinese hamster ovary cells resistant to concanavalin A and phytohemagglutinin-P. J Cell Biol. 1973 Mar;56(3):666–675. doi: 10.1083/jcb.56.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yang H. J., Hakomori S. I. A sphingolipid having a novel type of ceramide and lacto-N-fucopentaose 3. J Biol Chem. 1971 Mar 10;246(5):1192–1200. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES