Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Feb 1;92(2):514–522. doi: 10.1083/jcb.92.2.514

Cytoplasmic surface structure in postsynaptic membranes from electric tissue visualized by tannic-acid-mediated negative contrasting

PMCID: PMC2112082  PMID: 7061593

Abstract

In this study, acetylcholine receptor-rich postsynaptic membranes from electric tissues of the electric rays Narcine brasiliensis and Torpedo californica are negatively contrasted for thin-section electron microscopy through the use of tannic acid. Both outer (extracellular) and inner (cytoplasmic) membrane surfaces are negatively contrasted, and can be studied together in transverse sections. The hydrophobic portion of the membrane appears as a thin (approximately 2 nm), strongly contrasted band. This band is the only image given by membrane regions which are devoid of acetylcholine receptor. In regions of high receptor density, however, both surfaces of the membrane are seen to bear or be associated with material which extends approximately 6.5 nm beyond the center of the bilayer. The material on the outer surface can be identified with the well-known extracellular portion of the receptor molecule. A major portion of the inner surface image is eliminated by extraction of the membranes at pH 11 to remove peripheral membrane proteins, principally the 43,000 Mr (43K) protein. The images thus suggest a cytoplasmic localization of the 43K protein, with its distribution being coextensive with that of the receptor. They also suggest that the 43K protein extends farther from the cytoplasmic surface than does the receptor.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrantes F. J., Neugebauer D. C., Zingsheim H. P. Peptide extraction by alkaline treatment is accompanied by rearrangement of the membrane-bound acetylcholine receptor from Torpedo marmorata. FEBS Lett. 1980 Mar 24;112(1):73–78. doi: 10.1016/0014-5793(80)80131-1. [DOI] [PubMed] [Google Scholar]
  2. Blaurock A. E., Nelander J. C. Locating the major glycoprotein (Po protein) in the x-ray profile of frog sciatic-nerve myelin. J Neurochem. 1979 Jun;32(6):1753–1760. doi: 10.1111/j.1471-4159.1979.tb02288.x. [DOI] [PubMed] [Google Scholar]
  3. Cartaud J., Benedetti E. L. A morphological study of the cholinergic receptor protein from Torpedo marmorata in its membrane environment and in its detergent-extracted purified form. J Cell Sci. 1978 Feb;29:313–337. doi: 10.1242/jcs.29.1.313. [DOI] [PubMed] [Google Scholar]
  4. Cartaud J., Sobel A., Rousselet A., Devaux P. F., Changeux J. P. Consequences of alkaline treatment for the ultrastructure of the acetylcholine-receptor-rich membranes from Torpedo marmorata electric organ. J Cell Biol. 1981 Aug;90(2):418–426. doi: 10.1083/jcb.90.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang H. W., Bock E. Molecular forms of acetylcholine receptor. Effects of calcium ions and a sulfhydryl reagent on the occurrence of oligomers. Biochemistry. 1977 Oct 4;16(20):4513–4520. doi: 10.1021/bi00639a028. [DOI] [PubMed] [Google Scholar]
  6. Chang R. S., Potter L. T., Smith D. S. Postsynaptic membranes in the electric tissue of Narcine: IV. Isolation and characterization of the nicotinic receptor protein. Tissue Cell. 1977;9(4):623–644. doi: 10.1016/0040-8166(77)90031-3. [DOI] [PubMed] [Google Scholar]
  7. Elliott J., Blanchard S. G., Wu W., Miller J., Strader C. D., Hartig P., Moore H. P., Racs J., Raftery M. A. Purification of Torpedo californica post-synaptic membranes and fractionation of their constituent proteins. Biochem J. 1980 Mar 1;185(3):667–677. doi: 10.1042/bj1850667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fertuck H. C., Salpeter M. M. Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-alpha-bungarotoxin binding at mouse neuromuscular junctions. J Cell Biol. 1976 Apr;69(1):144–158. doi: 10.1083/jcb.69.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gysin R., Wirth M., Flanagan S. D. Structural heterogeneity and subcellular distribution of nicotinic synapse-associated proteins. J Biol Chem. 1981 Nov 25;256(22):11373–11376. [PubMed] [Google Scholar]
  10. Hartig P. R., Raftery M. A. Preparation of right-side-out, acetylcholine receptor enriched intact vesicles from Torpedo californica electroplaque membranes. Biochemistry. 1979 Apr 3;18(7):1146–1150. doi: 10.1021/bi00574a004. [DOI] [PubMed] [Google Scholar]
  11. Heuser J. E., Salpeter S. R. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane. J Cell Biol. 1979 Jul;82(1):150–173. doi: 10.1083/jcb.82.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klymkowsky M. W., Heuser J. E., Stroud R. M. Protease effects on the structure of acetylcholine receptor membranes from Torpedo californica. J Cell Biol. 1980 Jun;85(3):823–838. doi: 10.1083/jcb.85.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klymkowsky M. W., Stroud R. M. Immunospecific identification and three-dimensional structure of a membrane-bound acetylcholine receptor from Torpedo californica. J Mol Biol. 1979 Mar 5;128(3):319–334. doi: 10.1016/0022-2836(79)90091-3. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lindstrom J., Gullick W., Conti-Tronconi B., Ellisman M. Proteolytic nicking of the acetylcholine receptor. Biochemistry. 1980 Oct 14;19(21):4791–4795. doi: 10.1021/bi00562a012. [DOI] [PubMed] [Google Scholar]
  16. Lindstrom J., Walter B., Einarson B. Immunochemical similarities between subunits of acetylcholine receptors from Torpedo, Electrophorus, and mammalian muscle. Biochemistry. 1979 Oct 16;18(21):4470–4480. doi: 10.1021/bi00588a004. [DOI] [PubMed] [Google Scholar]
  17. Lo M. M., Garland P. B., Lamprecht J., Barnard E. A. Rotational mobility of the membrane-bound acetylcholine receptor of Torpedo electric organ measured by phosphorescence depolarisation. FEBS Lett. 1980 Mar 10;111(2):407–412. doi: 10.1016/0014-5793(80)80838-6. [DOI] [PubMed] [Google Scholar]
  18. Neubig R. R., Krodel E. K., Boyd N. D., Cohen J. B. Acetylcholine and local anesthetic binding to Torpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides. Proc Natl Acad Sci U S A. 1979 Feb;76(2):690–694. doi: 10.1073/pnas.76.2.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nickel E., Potter L. T. Ultrastructure of isolated membranes of Torpedo electric tissue. Brain Res. 1973 Jul 27;57(2):508–517. doi: 10.1016/0006-8993(73)90158-3. [DOI] [PubMed] [Google Scholar]
  20. Potter L. T., Smith D. S. Postsynaptic membranes in the electric tissue of Narcine: I. Organization and innervation of electric cells. Fine structure of nicotinic receptor-channel molecules revealed by transmission microscopy. Tissue Cell. 1977;9(4):585–594. doi: 10.1016/0040-8166(77)90028-3. [DOI] [PubMed] [Google Scholar]
  21. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reynolds J. A., Karlin A. Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry. 1978 May 30;17(11):2035–2038. doi: 10.1021/bi00604a001. [DOI] [PubMed] [Google Scholar]
  23. Ross M. J., Klymkowsky M. W., Agard D. A., Stroud R. M. Structural studies of a membrane-bound acetylcholine receptor from Torpedo californica. J Mol Biol. 1977 Nov;116(4):635–659. doi: 10.1016/0022-2836(77)90264-9. [DOI] [PubMed] [Google Scholar]
  24. Rousselet A., Cartaud J., Devaux P. F. Importance des interactions protéine-protéine dans les maintien de la structure des fragments excitables de l'organe électrique de Torpedo marmorata. C R Seances Acad Sci D. 1979 Sep 24;289(5):461–463. [PubMed] [Google Scholar]
  25. Saitoh T., Wennogle L. P., Changeux J. P. Factors regulating the susceptibility of the acetylcholine receptor protein to heat inactivation. FEBS Lett. 1979 Dec 15;108(2):489–494. doi: 10.1016/0014-5793(79)80595-5. [DOI] [PubMed] [Google Scholar]
  26. Sealock R. Identification of regions of high acetylcholine receptor density in tannic acid-fixed postsynaptic membranes from electric tissue. Brain Res. 1980 Oct 20;199(2):267–281. doi: 10.1016/0006-8993(80)90689-7. [DOI] [PubMed] [Google Scholar]
  27. Sealock R., Kavookjian A. Postsynaptic distribution of acetylcholine receptors in electroplax of the torpedine ray, Narcine brasiliensis. Brain Res. 1980 May 19;190(1):81–93. doi: 10.1016/0006-8993(80)91161-0. [DOI] [PubMed] [Google Scholar]
  28. Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sobel A., Heidmann T., Cartaud J., Changeux J. P. Reconstitution of a functional acetylcholine receptor. Polypeptide chains, ultrastructure, and binding sites for acetylcholine and local anesthetics. Eur J Biochem. 1980 Sep;110(1):13–33. doi: 10.1111/j.1432-1033.1980.tb04838.x. [DOI] [PubMed] [Google Scholar]
  30. Sobel A., Heidmann T., Hofler J., Changeux J. P. Distinct protein components from Torpedo marmorata membranes carry the acetylcholine receptor site and the binding site for local anesthetics and histrionicotoxin. Proc Natl Acad Sci U S A. 1978 Jan;75(1):510–514. doi: 10.1073/pnas.75.1.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sobel A., Weber M., Changeux J. P. Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur J Biochem. 1977 Oct 17;80(1):215–224. doi: 10.1111/j.1432-1033.1977.tb11874.x. [DOI] [PubMed] [Google Scholar]
  32. Steck T. L., Yu J. Selective solubilization of proteins from red blood cell membranes by protein perturbants. J Supramol Struct. 1973;1(3):220–232. doi: 10.1002/jss.400010307. [DOI] [PubMed] [Google Scholar]
  33. Strader C. B., Revel J. P., Raftery M. A. Demonstration of the transmembrane nature of the acetylcholine receptor by labeling with anti-receptor antibodies. J Cell Biol. 1979 Nov;83(2 Pt 1):499–510. doi: 10.1083/jcb.83.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Strader C. D., Lazarides E., Raftery M. A. The characterization of actin associated with postsynaptic membranes from Torpedo californica. Biochem Biophys Res Commun. 1980 Jan 29;92(2):365–373. doi: 10.1016/0006-291x(80)90342-3. [DOI] [PubMed] [Google Scholar]
  35. Tarrab-Hazdai R., Geiger B., Fuchs S., Amsterdam A. Localization of acetylcholine receptor in excitable membrane from the electric organ of Torpedo: Evidence for exposure of receptor antigenic sites on both sides of the membrane. Proc Natl Acad Sci U S A. 1978 May;75(5):2497–2501. doi: 10.1073/pnas.75.5.2497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tilney L. G., Bryan J., Bush D. J., Fujiwara K., Mooseker M. S., Murphy D. B., Snyder D. H. Microtubules: evidence for 13 protofilaments. J Cell Biol. 1973 Nov;59(2 Pt 1):267–275. doi: 10.1083/jcb.59.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tsuji S. Ultracryotomy of nerve-electroplaque synapses for immunocytochemistry. J Neurocytol. 1978 Jun;7(3):381–389. doi: 10.1007/BF01177000. [DOI] [PubMed] [Google Scholar]
  38. Wennogle L. P., Changeux J. P. Transmembrane orientation of proteins present in acetylcholine receptor-rich membranes from Torpedo marmorata studied by selective proteolysis. Eur J Biochem. 1980 May;106(2):381–393. doi: 10.1111/j.1432-1033.1980.tb04584.x. [DOI] [PubMed] [Google Scholar]
  39. Witzemann V., Raftery M. Ligand binding sites and subunit interactions of Torpedo californica acetylcholine receptor. Biochemistry. 1978 Aug 22;17(17):3598–3604. doi: 10.1021/bi00610a028. [DOI] [PubMed] [Google Scholar]
  40. Wu W. C., Raftery M. A. Reconstitution of acetylcholine receptor function using purified receptor protein. Biochemistry. 1981 Feb 17;20(4):694–701. doi: 10.1021/bi00507a004. [DOI] [PubMed] [Google Scholar]
  41. Zingsheim H. P., Neugebauer D. C., Barrantes F. J., Frank J. Structural details of membrane-bound acetylcholine receptor from Tropedo marmorata. Proc Natl Acad Sci U S A. 1980 Feb;77(2):952–956. doi: 10.1073/pnas.77.2.952. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES