Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Feb 1;92(2):540–558. doi: 10.1083/jcb.92.2.540

Dynamics of spindle microtubule organization: kinetochore fiber microtubules of plant endosperm

PMCID: PMC2112090  PMID: 7061596

Abstract

Organization of kinetochore fiber microtubules (MTs) throughout mitosis in the endosperm of Haemanthus katherinae Bak. has been analysed using serial section reconstruction from electron micrographs. Accurate and complete studies have required careful analysis of individual MTs in precisely oriented serial sections through many (45) preselected cells. Kinetochore MTs (kMTs) and non-kinetochore MTs (nkMTs) intermingle within the fiber throughout division, undergoing characteristic, time- dependent, organizational changes. The number of kMTs increases progressively throughout the kinetochore during prometaphase-metaphase. Prometaphase chromosomes which were probably moving toward the pole at the time of fixation have unequally developed kinetochores associated with many nkMTs. The greatest numbers of kMTs (74-109/kinetochore), kinetochore cross-sectional area, and kMT central density all occur at metaphase. Throughout anaphase and telophase there is a decrease in the number of kMTs and, in the kinetochore cross-sectional area, an increased obliquity of kMTs and increased numbers of short MTs near the kinetochore. Delayed kinetochores possess more kMTs than do kinetochores near the poles, but fewer kMTs than chromosomes which have moved equivalent distances in other cells. The frequency of C-shaped proximal MT terminations within kinetochores is highest at early prometaphase and midtelophase, falling to zero at midanaphase. Therefore, in Haemanthus, MTs are probably lost from the periphery of the kinetochore during anaphase in a manner which is related to both time and position of the chromosome along the spindle axis. The complex, time-dependent organization of MTs in the kinetochore region strongly suggests that chromosome movement is accompanied by continual MT rearrangement and/or assembly/disassembly.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alov I. A., Lyubskii S. L. Functional morphology of the kinetochore. Int Rev Cytol Suppl. 1977;(6):59–74. [PubMed] [Google Scholar]
  2. Bajer A. S. Interaction of microtubules and the mechanism of chromosome movement (zipper hypothesis). 1. General principle. Cytobios. 1973 Nov;8(31):139–160. [PubMed] [Google Scholar]
  3. Bajer A. Chromosome movement and fine structure of the mitotic spindle. Symp Soc Exp Biol. 1968;22:285–310. [PubMed] [Google Scholar]
  4. Bergen L. G., Kuriyama R., Borisy G. G. Polarity of microtubules nucleated by centrosomes and chromosomes of Chinese hamster ovary cells in vitro. J Cell Biol. 1980 Jan;84(1):151–159. doi: 10.1083/jcb.84.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brinkley B. R., Cartwright J., Jr Ultrastructural analysis of mitotic spindle elongation in mammalian cells in vitro. Direct microtubule counts. J Cell Biol. 1971 Aug;50(2):416–431. doi: 10.1083/jcb.50.2.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen W. D., Gottlieb T. C-microtubules in isolated mitotic spindles. J Cell Sci. 1971 Nov;9(3):603–619. doi: 10.1242/jcs.9.3.603. [DOI] [PubMed] [Google Scholar]
  7. Euteneuer U., McIntosh J. R. Polarity of midbody and phragmoplast microtubules. J Cell Biol. 1980 Nov;87(2 Pt 1):509–515. doi: 10.1083/jcb.87.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Euteneuer U., McIntosh J. R. Structural polarity of kinetochore microtubules in PtK1 cells. J Cell Biol. 1981 May;89(2):338–345. doi: 10.1083/jcb.89.2.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forer A., Jackson W. T., Engberg A. Actin in spindles of Haemanthus katherinae endosperm. II. Distribution of actin in chromosomal spindle fibres, determined by analysis of serial sections. J Cell Sci. 1979 Jun;37:349–371. doi: 10.1242/jcs.37.1.349. [DOI] [PubMed] [Google Scholar]
  10. Fuge H. Microtubule disorientation in anaphase half-spindles during autosome segregation in crane fly spermatocytes. Chromosoma. 1980;76(3):309–328. doi: 10.1007/BF00327269. [DOI] [PubMed] [Google Scholar]
  11. Fuge H. Spindelbau, Midrotubuliverteilung und Chromosomenstruktur während der I. meiotischen Teilung der Spermatocyten von Pales ferruginea. Eine elektronenmikroskopische Analyse. Z Zellforsch Mikrosk Anat. 1971;120(4):579–599. [PubMed] [Google Scholar]
  12. Fuge H. The arrangement of microtubules and the attachment of chromosomes to the spindle during anaphase in tipulid spermatocytes. Chromosoma. 1974 Apr 9;45(3):245–260. doi: 10.1007/BF00283409. [DOI] [PubMed] [Google Scholar]
  13. Fuge H. Ultrastructure of the mitotic spindle. Int Rev Cytol Suppl. 1977;(6):1–58. [PubMed] [Google Scholar]
  14. Fuge H. Verteilung der Mikrotubuli in Metaphase- und Anaphase-Spindeln der Spermatocyten von Pales ferruginea. Eine quantitative Analyse von Serienquerschnitten. Chromosoma. 1973 Aug 10;43(2):109–143. doi: 10.1007/BF00483375. [DOI] [PubMed] [Google Scholar]
  15. Hard R., Allen R. D. Behaviour of kinetochore fibres in Haemanthus katherinae during anaphase movements of chromosomes. J Cell Sci. 1977;27:47–56. doi: 10.1242/jcs.27.1.47. [DOI] [PubMed] [Google Scholar]
  16. Hardham A. R., Gunning B. E. Structure of cortical microtubule arrays in plant cells. J Cell Biol. 1978 Apr;77(1):14–34. doi: 10.1083/jcb.77.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Inoué S., Ritter H., Jr Dynamics of mitotic spindle organization and function. Soc Gen Physiol Ser. 1975;30:3–30. [PubMed] [Google Scholar]
  18. Jensen C., Bajer A. Effects of dehydration on the microtubules of the mitotic spindle. Studies in vitro and with the electron microscope. J Ultrastruct Res. 1969 Mar;26(5):367–386. doi: 10.1016/s0022-5320(69)90044-6. [DOI] [PubMed] [Google Scholar]
  19. Kirschner M. W. Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo. J Cell Biol. 1980 Jul;86(1):330–334. doi: 10.1083/jcb.86.1.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krishan A., Buck R. C. Ultrastructure of cell division in insect spermatogenesis. J Ultrastruct Res. 1965 Dec;13(5):444–458. doi: 10.1016/s0022-5320(65)90007-9. [DOI] [PubMed] [Google Scholar]
  21. LaFountain J. R., Jr Analysis of birefringence and ultrastructure of spindles in primary spermatocytes of Nephrotoma suturalis during anaphase. J Ultrastruct Res. 1976 Mar;54(3):333–346. doi: 10.1016/s0022-5320(76)80020-2. [DOI] [PubMed] [Google Scholar]
  22. Luykx P. Kinetochore-to-pole connections during prometaphase of the meiotic divisions in Urechis eggs. Exp Cell Res. 1965 Sep;39(2):658–668. doi: 10.1016/0014-4827(65)90069-8. [DOI] [PubMed] [Google Scholar]
  23. MOLLENHAUER H. H. PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964 Mar;39:111–114. [PubMed] [Google Scholar]
  24. Margolis R. L., Wilson L., Keifer B. I. Mitotic mechanism based on intrinsic microtubule behaviour. Nature. 1978 Mar 30;272(5652):450–452. doi: 10.1038/272450a0. [DOI] [PubMed] [Google Scholar]
  25. Mc2ntosh J. R., Cande Z., Snyder J., Vanderslice K. Studies on the mechanism of mitosis. Ann N Y Acad Sci. 1975 Jun 30;253:407–427. doi: 10.1111/j.1749-6632.1975.tb19217.x. [DOI] [PubMed] [Google Scholar]
  26. McDonald K., Pickett-Heaps J. D., McIntosh J. R., Tippit D. H. On the mechanism of anaphase spindle elongation in Diatoma vulgare. J Cell Biol. 1977 Aug;74(2):377–388. doi: 10.1083/jcb.74.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McIntosh J. R., Cande W. Z., Snyder J. A. Structure and physiology of the mammalian mitotic spindle. Soc Gen Physiol Ser. 1975;30:31–76. [PubMed] [Google Scholar]
  28. McIntosh J. R., McDonald K. L., Edwards M. K., Ross B. M. Three-dimensional structure of the central mitotic spindle of Diatoma vulgare. J Cell Biol. 1979 Nov;83(2 Pt 1):428–442. doi: 10.1083/jcb.83.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moens P. B. Kinetochore microtubule numbers of different sized chromosomes. J Cell Biol. 1979 Dec;83(3):556–561. doi: 10.1083/jcb.83.3.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Molè-Bajer J. Fine structural studies of apolar mitosis. Chromosoma. 1969;26(4):427–448. doi: 10.1007/BF00326354. [DOI] [PubMed] [Google Scholar]
  31. Niclas R. B., Kubai D. F., Ris H. Electron microscopy of the spindle in locally heated cells. Chromosoma. 1979 Sep 1;74(1):39–50. doi: 10.1007/BF00344481. [DOI] [PubMed] [Google Scholar]
  32. Oakley B. R., Heath I. B. The arrangement of microtubules in serially sectioned spindles of the alga Cryptomonas. J Cell Sci. 1978 Jun;31:53–70. doi: 10.1242/jcs.31.1.53. [DOI] [PubMed] [Google Scholar]
  33. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rattner J. B., Berns M. W. Distribution of microtubules during centriole separation in rat kangaroo (Potorous) cells. Cytobios. 1976;15(57):37–43. [PubMed] [Google Scholar]
  35. Roos U. P. Light and electron microscopy of rat kangaroo cells in mitosis. II. Kinetochore structure and function. Chromosoma. 1973;41(2):195–220. doi: 10.1007/BF00319696. [DOI] [PubMed] [Google Scholar]
  36. Roos U. P. Light and electron microscopy of rat kangaroo cells in mitosis. III. Patterns of chromosome behavior during prometaphase. Chromosoma. 1976 Mar 10;54(4):363–385. doi: 10.1007/BF00292816. [DOI] [PubMed] [Google Scholar]
  37. Rostgaard J. A mechanical device for retrieving ribbons of ultrathin sections without folds. Stain Technol. 1973 Nov;48(6):279–282. doi: 10.3109/10520297309116642. [DOI] [PubMed] [Google Scholar]
  38. Sanger J. W., Sanger J. M. The cytoskeleton and cell division. Methods Achiev Exp Pathol. 1979;8:110–142. [PubMed] [Google Scholar]
  39. Tippit D. H., Pickett-Heaps J. D., Leslie R. Cell division in two large pennate diatoms Hantzschia and Nitzschia III. A new proposal for kinetochore function during prometaphase. J Cell Biol. 1980 Aug;86(2):402–416. doi: 10.1083/jcb.86.2.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tippit D. H., Pillus L., Pickett-Heaps J. Organization of spindle microtubules in Ochromonas danica. J Cell Biol. 1980 Dec;87(3 Pt 1):531–545. doi: 10.1083/jcb.87.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tippit D. H., Schulz D., Pickett-Heaps J. D. Analysis of the distribution of spindle microtubules in the diatom Fragilaria. J Cell Biol. 1978 Dec;79(3):737–763. doi: 10.1083/jcb.79.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES