Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Feb 1;92(2):452–461. doi: 10.1083/jcb.92.2.452

Isolation of bone cell clones with differences in growth, hormone responses, and extracellular matrix production

PMCID: PMC2112092  PMID: 6277963

Abstract

Clones of nontransformed hormone-responsive bone cells have been isolated in vitro from mixed cell populations of fetal rat calvaria. In several independent isolations, microscopically visible colonies appeared at plating efficiencies of 5-10% of the starting cell numbers. Of these clones, approximately 10% grew to mass populations which could be assayed for a number of growth and biochemical properties. Although some similarities existed among the clones, they could be distinguished from each other and from the mixed cell populations. Population- doubling times (tDs) and saturation densities varied over a wide range: e.g., tDs of 24-72 h and saturation densities of 0.4-5 x 10(5) cells/cm2. Morphologies varied from roughly polygonal multilayering cells to typically spindle-shaped monolayering cells. Hormone responsiveness, as measured by stimulation of cAMP by hormones, indicated that some clones were responsive to both parathyroid hormone (PTH) and prostaglandin E2 (PGE2), while others responded to PTH only. Analysis of extracellular matrix components revealed that all clones produced type I and type III collagens, though in different proportions. Similarly, although all clones synthesized four glycosaminoglycans (hyaluronic acid, heparan sulfate, chondroitin sulfate, and dermatan sulfate), the quantities of each were distinctive from clone to clone. Further investigation of such clones is continuing to define more precisely the heterogeneity of clonal bone cell populations in vitro. They represent an important step in the study of the endocrinology and differentiation of bone.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breen M., Weinstein H. G., Andersen M., Veis A. Microanalysis and characterization of acidic glycosaminoglycans in human tissues. Anal Biochem. 1970 May;35(1):146–159. doi: 10.1016/0003-2697(70)90020-5. [DOI] [PubMed] [Google Scholar]
  2. Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cetta G., Lenzi L., Balduini C., Valli M., Tenni R., De Luca G., Castellani A. A. Glycosaminoglycan alterations in osteogenesis imperfecta. Ital J Biochem. 1980 Sep-Oct;29(5):337–350. [PubMed] [Google Scholar]
  4. Fisher L. W., Schraer H. The glycosaminoglycans of estrogen-induced medullary bone in Japanese quail. Arch Biochem Biophys. 1980 Dec;205(2):396–403. doi: 10.1016/0003-9861(80)90122-8. [DOI] [PubMed] [Google Scholar]
  5. Heersche J. N., Heyboer M. P., Ng B. Hormone-specific suppression of adenosine 3',5'-monophosphate responses in bone in vitro during prolonged incubation with parathyroid hormone, prostaglandin E1, and calcitonin. Endocrinology. 1978 Aug;103(2):333–340. doi: 10.1210/endo-103-2-333. [DOI] [PubMed] [Google Scholar]
  6. Heersche J. N., Moe H. K., Brunette D. M., Rao A. V., Riemers S., Rao L. G. Long-term culture of parathyroid hormone and prostaglandin E1 responsive bone cells in monolayers and on artificial capillaries. Calcif Tissue Res. 1977 May;22 (Suppl):275–282. doi: 10.1007/BF02064079. [DOI] [PubMed] [Google Scholar]
  7. Hronowski L., Anastassiades T. P. The effect of cell density on net rates of glycosaminoglycan synthesis and secretion by cultured rat fibroblasts. J Biol Chem. 1980 Nov 10;255(21):10091–10099. [PubMed] [Google Scholar]
  8. Kent G. N., Jilka R. L., Cohn D. V. Homologous and heterologous control of bone cell adenosine 3',5'-monophosphate response to hormones by parathoromone, prostaglandin E2, calcitonin, and 1,25-dihydroxycholecalciferol. Endocrinology. 1980 Nov;107(5):1474–1481. doi: 10.1210/endo-107-5-1474. [DOI] [PubMed] [Google Scholar]
  9. Limeback H. F., Sodek J. Procollagen synthesis and processing in periodontal ligament in vivo and in vitro. A comparative study using slab-gel fluorography. Eur J Biochem. 1979 Oct 15;100(2):541–550. doi: 10.1111/j.1432-1033.1979.tb04200.x. [DOI] [PubMed] [Google Scholar]
  10. Luben R. A., Wong G. L., Cohn D. V. Biochemical characterization with parathormone and calcitonin of isolated bone cells: provisional identification of osteoclasts and osteoblasts. Endocrinology. 1976 Aug;99(2):526–534. doi: 10.1210/endo-99-2-526. [DOI] [PubMed] [Google Scholar]
  11. Majeska R. J., Rodan S. B., Rodan G. A. Parathyroid hormone-responsive clonal cell lines from rat osteosarcoma. Endocrinology. 1980 Nov;107(5):1494–1503. doi: 10.1210/endo-107-5-1494. [DOI] [PubMed] [Google Scholar]
  12. Mathews M. B. Macromolecular evolution of connective tissue. Biol Rev Camb Philos Soc. 1967 Nov;42(4):499–551. doi: 10.1111/j.1469-185x.1967.tb01528.x. [DOI] [PubMed] [Google Scholar]
  13. Merrilees M. J., Merrilees M. A., Birnbaum P. S., Scott P. J., Flint M. H. The effect of centrifugal force on glycosaminoglycan production by aortic smooth muscle cells in culture. Atherosclerosis. 1977 Jul;27(3):259–264. doi: 10.1016/0021-9150(77)90034-x. [DOI] [PubMed] [Google Scholar]
  14. Miller E. J. Biochemical characteristics and biological significance of the genetically-distinct collagens. Mol Cell Biochem. 1976 Dec 10;13(3):165–192. doi: 10.1007/BF01731779. [DOI] [PubMed] [Google Scholar]
  15. Mueller S. N., Rosen E. M., Levine E. M. Cellular senescence in a cloned strain of bovine fetal aortic endothelial cells. Science. 1980 Feb 22;207(4433):889–891. doi: 10.1126/science.7355268. [DOI] [PubMed] [Google Scholar]
  16. Niebes P., Schifflers M. H. Micromethod for the determination of glycosaminoglycans in the serum. Results from the serum of healthy and varicose subjects. Clin Chim Acta. 1975 Jul 23;62(2):195–202. doi: 10.1016/0009-8981(75)90228-4. [DOI] [PubMed] [Google Scholar]
  17. PECK W. A., BIRGE S. J., Jr, FEDAK S. A. BONE CELLS: BIOCHEMICAL AND BIOLOGICAL STUDIES AFTER ENZYMATIC ISOLATION. Science. 1964 Dec 11;146(3650):1476–1477. doi: 10.1126/science.146.3650.1476. [DOI] [PubMed] [Google Scholar]
  18. Peck W. A., Carpenter J., Messinger K., DeBra D. Cyclic 3'5'-adenosine monophosphate in isolated bone cells. Response to low concentrations of parathyroid hormone. Endocrinology. 1973 Mar;92(3):692–697. doi: 10.1210/endo-92-3-692. [DOI] [PubMed] [Google Scholar]
  19. Peterkofsky B., Diegelmann R. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry. 1971 Mar 16;10(6):988–994. doi: 10.1021/bi00782a009. [DOI] [PubMed] [Google Scholar]
  20. Puzas J. E., Vignery A., Rasmussen H. Isolation of specific bone cell types by free-flow electrophoresis. Calcif Tissue Int. 1979 Jul 3;27(3):263–268. doi: 10.1007/BF02441195. [DOI] [PubMed] [Google Scholar]
  21. Rao L. G., Ng B., Brunette D. M., Heersche J. N. Parathyroid hormone- and prostaglandin E1-response in a selected population of bone cells after repeated subculture and storage at -80C. Endocrinology. 1977 May;100(5):1233–1241. doi: 10.1210/endo-100-5-1233. [DOI] [PubMed] [Google Scholar]
  22. Scott D. M., Kent G. N., Cohn D. V. Collagen synthesis in cultured osteoblast-like cells. Arch Biochem Biophys. 1980 May;201(2):384–391. doi: 10.1016/0003-9861(80)90526-3. [DOI] [PubMed] [Google Scholar]
  23. Simonian M. H., Hornsby P. J., Ill C. R., O'Hare M. J., Gill G. N. Characterization of cultured bovine adrenocortical cells and derived clonal lines: regulation of steroidogenesis and culture life span. Endocrinology. 1979 Jul;105(1):99–108. doi: 10.1210/endo-105-1-99. [DOI] [PubMed] [Google Scholar]
  24. Smith D. M., Johnston C. C., Jr, Severson A. R. Studies of the metabolism of separated bone cells. I. Techniques of separation and identification. Calcif Tissue Res. 1973 Jan 25;11(1):56–69. doi: 10.1007/BF02546595. [DOI] [PubMed] [Google Scholar]
  25. Sodek J., Limeback H. F. Comparison of the rates of synthesis, conversion, and maturation of type I and type III collagens in rat periodontal tissues. J Biol Chem. 1979 Oct 25;254(20):10496–10502. [PubMed] [Google Scholar]
  26. Stern R., Wilczek J., Thorpe W. P., Rosenberg S. A., Cannon G. Procollagens as markers for the cell of origin of human bone tumors. Cancer Res. 1980 Feb;40(2):325–328. [PubMed] [Google Scholar]
  27. Wang H. M., Nanda V., Rao L. G., Melcher A. H., Heersche J. N., Sodek J. Specific immunohistochemical localization of type III collagen in porcine periodontal tissues using the peroxidase-antiperoxidase method. J Histochem Cytochem. 1980 Nov;28(11):1215–1223. doi: 10.1177/28.11.7000890. [DOI] [PubMed] [Google Scholar]
  28. Wergedal J. E., Baylink D. J. Electron microprobe measurements of bone mineralization rate in vivo. Am J Physiol. 1974 Feb;226(2):345–352. doi: 10.1152/ajplegacy.1974.226.2.345. [DOI] [PubMed] [Google Scholar]
  29. Williams D. C., Boder G. B., Toomey R. E., Paul D. C., Hillman C. C., Jr, King K. L., Van Frank R. M., Johnston C. C., Jr Mineralization and metabolic response in serially passaged adult rat bone cells. Calcif Tissue Int. 1980;30(3):233–246. doi: 10.1007/BF02408633. [DOI] [PubMed] [Google Scholar]
  30. Wong G. L., Cohn D. V. Target cells in bone for parathormone and calcitonin are different: enrichment for each cell type by sequential digestion of mouse calvaria and selective adhesion to polymeric surfaces. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3167–3171. doi: 10.1073/pnas.72.8.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wong G., Cohn D. V. Separation of parathyroid hormone and calcitonin-sensitive cells from non-responsive bone cells. Nature. 1974 Dec 20;252(5485):713–715. doi: 10.1038/252713a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES