Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Apr 1;93(1):144–154. doi: 10.1083/jcb.93.1.144

Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization

PMCID: PMC2112104  PMID: 7068752

Abstract

The induction of autophagy caused by vinblastine (VBL) has been found to be concomitant with a stimulation of proteolysis in a mitochondrial- lysosomal (ML) fraction from the rat liver (Marzella and Glaumann, 1980, Lab. Invest., 42: 8-17. Marzella and Glaumann, 1980, Lab. Invest., 42:18-27). In this fraction the enhanced proteolysis is associated with a threefold increase in the relative fractional volume of autophagic vacuoles (AVs). In an attempt to isolate the AVs, we subfractionated the ML suspension at different intervals after the induction of autophagy by VBL by centrifugation on a discontinuous Metrizamide gradient ranging from 50% to 15%. The material banding at the 24 to 20% and the 20 to 15% interphases was collected. Morphological analysis reveals that 3 h after induction of autophagy these fractions consist predominantly (approximately 90%) of intact autophagic vacuoles. These autophagic vacuoles contain cytosol, mitochondria, portions of endoplasmic reticulum, and occasional very low density lipoprotein, particles either free or in Golgi apparatus derivatives, in particular secretory granules. The sequestered materials show ultrastructural signs of ongoing degradation. In addition to containing typical autophagic vacuoles, the isolated fractions consist of lysosomes lacking morphologically recognizable cellular components. Contamination from nonlysosomal material is only a few percent as judged from morphometric analysis. Typical lysosomal "marker" enzymes are enriched 15-fold, whereas the proteolytic activity is enriched 10- to 20-fold in the isolated AV fraction as compared to the homogenate. Initially, the yield of nonlysosomal mitochondrial and microsomal enzyme activities increases in parallel with the induction of autophagy but, later on, decreases with advanced degradation of the sequestered cell organelles. Therefore, in the case of AVs the presence of nonlysosomal marker enzymes cannot be used for calculation of fraction purity, since newly sequestered organelles are enzymatically active. Isolated autophagic vacuoles show proteolytic activity when incubated in vitro. The comparatively high phospholipid/protein ratio (0.5) of the AV fraction suggests that phospholipids are degraded more slow than proteins. Is it concluded that AVs can be isolated into a pure fraction and are the subcellular site of enhanced protein degradation in the rat liver after induction of autophagy.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arborgh B. A., Glaumann H., Ericsson J. L. Studies on iron loading of rat liver lysosomes. Effects on the liver and distribution and fate of iron. Lab Invest. 1974 May;30(5):664–673. [PubMed] [Google Scholar]
  2. Aronson N. N., Jr, De Duve C. Digestive activity of lysosomes. II. The digestion of macromolecular carbohydrates by extracts of rat liver lysosomes. J Biol Chem. 1968 Sep 10;243(17):4564–4573. [PubMed] [Google Scholar]
  3. Arsenis C., Gordon J. S., Touster O. Degradation of nucleic acids by lysosomal extracts of rat liver and Ehrlich ascites tumor cells. J Biol Chem. 1970 Jan 10;245(1):205–211. [PubMed] [Google Scholar]
  4. Arstila A. U., Nuuja I. J., Trump B. F. Studies on cellular autophagocytosis. Vinblastine-induced autophagy in the rat liver. Exp Cell Res. 1974 Aug;87(2):249–252. doi: 10.1016/0014-4827(74)90477-7. [DOI] [PubMed] [Google Scholar]
  5. Arstila A. U., Trump B. F. Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration. Am J Pathol. 1968 Nov;53(5):687–733. [PMC free article] [PubMed] [Google Scholar]
  6. BERTHET J., DE DUVE C. Tissue fractionation studies. I. The existence of a mitochondria-linked, enzymically inactive form of acid phosphatase in rat-liver tissue. Biochem J. 1951 Dec;50(2):174–181. doi: 10.1042/bj0500174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ballard F. J. Intracellular protein degradation. Essays Biochem. 1977;13:1–37. [PubMed] [Google Scholar]
  8. Bowers W. E., Finkenstaedt J. T., de Duve C. Lysosomes in lymphoid tissue. I. The measurement of hydrolytic activities in whole homogenates. J Cell Biol. 1967 Feb;32(2):325–337. doi: 10.1083/jcb.32.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coffey J. W., De Duve C. Digestive activity of lysosomes. I. The digestion of proteins by extracts of rat liver lysosomes. J Biol Chem. 1968 Jun 25;243(12):3255–3263. [PubMed] [Google Scholar]
  10. Coleman R., Michell R. H., Finean J. B., Hawthorne J. N. A purified plasma membrane fraction isolated from rat liver under isotonic conditions. Biochim Biophys Acta. 1967 Sep 9;135(4):573–579. doi: 10.1016/0005-2736(67)90089-2. [DOI] [PubMed] [Google Scholar]
  11. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):73–96. doi: 10.1083/jcb.30.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dean R. T. Macrophage protein turnover. Evidence for lysosomal participation in basal proteolysis. Biochem J. 1979 May 15;180(2):339–345. doi: 10.1042/bj1800339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Deter R. L., De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol. 1967 May;33(2):437–449. doi: 10.1083/jcb.33.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fehrnström H., Eriksson L. C., Dallner G. Centrifugation of liver microsomes on metrizamide density gradients. Prep Biochem. 1976;6(2-3):133–145. doi: 10.1080/00327487608061608. [DOI] [PubMed] [Google Scholar]
  15. Fowler S., De Duve C. Digestive activity of lysosomes. 3. The digestion of lipids by extracts of rat liver lysosomes. J Biol Chem. 1969 Jan 25;244(2):471–481. [PubMed] [Google Scholar]
  16. Garlick P. J., Waterlow J. C., Swick R. W. Measurement of protein turnover in rat liver. Analysis of the complex curve for decay of label in a mixture of proteins. Biochem J. 1976 Jun 15;156(3):657–663. doi: 10.1042/bj1560657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Glaumann H., Berezesky I. K., Ericsson J. L., Trump B. F. Lysosomal degradation of cell organelles. II. Ultrastructural analysis of uptake and digestion of intravenously injected microsomes and ribosomes by Kupffer cells. Lab Invest. 1975 Sep;33(3):252–261. [PubMed] [Google Scholar]
  18. Glaumann H., Dallner G. Lipid composition and turnover of rough and smooth microsomal membranes in rat liver. J Lipid Res. 1968 Nov;9(6):720–729. [PubMed] [Google Scholar]
  19. Glaumann H., Dallner G. Subfractionation of smooth microsomes from rat liver. J Cell Biol. 1970 Oct;47(1):34–48. doi: 10.1083/jcb.47.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Glaumann H., Jansson H., Arborgh B., Ericsson J. L. Isolation of liver lysosomes by iron loading. Ultrastructural characterization. J Cell Biol. 1975 Dec;67(3):887–894. doi: 10.1083/jcb.67.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Glaumann H., Marzella L. Degradation of membrane components by Kupffer cell lysosomes. Lab Invest. 1981 Dec;45(6):479–490. [PubMed] [Google Scholar]
  22. Glaumann H., Trump B. F. Lysosomal degradation of cell organelles. III. Uptake and disappearance in Kupffer cells of intravenously injected isotope-labeled mitochondria and microsomes in vivo and in vitro. Lab Invest. 1975 Sep;33(3):262–272. [PubMed] [Google Scholar]
  23. Gray R. H., Sokol M., Brabec R. K., Brabec M. J. Characterization of chloroquine-induced autophagic vacuoles isolated from rat liver. Exp Mol Pathol. 1981 Feb;34(1):72–86. doi: 10.1016/0014-4800(81)90037-x. [DOI] [PubMed] [Google Scholar]
  24. Hambrey P. N., Mellors A. Cardiolipin degradation by rat liver lysosomes. Biochem Biophys Res Commun. 1975 Feb 17;62(4):939–945. doi: 10.1016/0006-291x(75)90413-1. [DOI] [PubMed] [Google Scholar]
  25. Krishan A., Hsu D. Binding of colchicine-3H to vinblastine- and vincristine-induced crystals in mammalian tissue culture cells. J Cell Biol. 1971 Feb;48(2):407–410. doi: 10.1083/jcb.48.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kuriyama Y., Omura T., Siekevitz P., Palade G. E. Effects of phenobarbital on the synthesis and degradation of the protein components of rat liver microsomal membranes. J Biol Chem. 1969 Apr 25;244(8):2017–2026. [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. MEGO J. L., MCQUEEN J. D. THE UPTAKE AND DEGRADATION OF INJECTED LABELED PROTEINS BY MOUSE-LIVER PARTICLES. Biochim Biophys Acta. 1965 Apr 12;100:136–143. doi: 10.1016/0304-4165(65)90436-8. [DOI] [PubMed] [Google Scholar]
  29. Mahadevan S., Dillard C. J., Tappel A. L. Degradation of polysaccharides, mucopolysaccharides, and glycoproteins by lysosomal glycosidases. Arch Biochem Biophys. 1969 Feb;129(2):525–533. doi: 10.1016/0003-9861(69)90210-0. [DOI] [PubMed] [Google Scholar]
  30. Mahadevan S., Tappel A. L. Lysosomal lipases of rat liver and kidney. J Biol Chem. 1968 Jun 10;243(11):2849–2854. [PubMed] [Google Scholar]
  31. Marantz R., Ventilla M., Shelanski M. Vinblastine-induced precipitation of microtubule protein. Science. 1969 Aug 1;165(3892):498–499. doi: 10.1126/science.165.3892.498. [DOI] [PubMed] [Google Scholar]
  32. Marzella L., Glaumann H. Increased degradation in rat liver induced by vinblastine. I. Biochemical characterization. Lab Invest. 1980 Jan;42(1):8–17. [PubMed] [Google Scholar]
  33. Marzella L., Glaumann H. Increased degradation in rat liver induced by vinblastine. II. Morphologic characterization. Lab Invest. 1980 Jan;42(1):18–27. [PubMed] [Google Scholar]
  34. Marzella L., Sandberg P. O., Glaumann H. Autophagic degradation in rat liver after vinblastine treatment. Exp Cell Res. 1980 Aug;128(2):291–301. doi: 10.1016/0014-4827(80)90065-8. [DOI] [PubMed] [Google Scholar]
  35. Mortimore G. E., Mondon C. E. Inhibition by insulin of valine turnover in liver. Evidence for a general control of proteolysis. J Biol Chem. 1970 May 10;245(9):2375–2383. [PubMed] [Google Scholar]
  36. Omura T., Siekevitz P., Palade G. E. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J Biol Chem. 1967 May 25;242(10):2389–2396. [PubMed] [Google Scholar]
  37. Pfeifer U. Inhibition by insulin of the formation of autophagic vacuoles in rat liver. A morphometric approach to the kinetics of intracellular degradation by autophagy. J Cell Biol. 1978 Jul;78(1):152–167. doi: 10.1083/jcb.78.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Poole B., Wibo M. Protein degradation in cultured cells. The effect of fresh medium, fluoride, and iodoacetate on the digestion of cellular protein of rat fibroblasts. J Biol Chem. 1973 Sep 10;248(17):6221–6226. [PubMed] [Google Scholar]
  39. Reijngoud D. J., Tager J. M. The permeability properties of the lysosomal membrane. Biochim Biophys Acta. 1977 Nov 14;472(3-4):419–449. doi: 10.1016/0304-4157(77)90005-3. [DOI] [PubMed] [Google Scholar]
  40. SEARCY R. L., BERGQUIST L. M., JUNG R. C. Rapid ultramicro estimation of serum total cholesterol. J Lipid Res. 1960 Jul;1:349–351. [PubMed] [Google Scholar]
  41. SWANSON M. A. Phosphatases of liver. I. Glucose-6-phosphatase. J Biol Chem. 1950 Jun;184(2):647–659. [PubMed] [Google Scholar]
  42. Seglen P. O., Grinde B., Solheim A. E. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem. 1979 Apr 2;95(2):215–225. doi: 10.1111/j.1432-1033.1979.tb12956.x. [DOI] [PubMed] [Google Scholar]
  43. Ward W. F., Cox J. R., Mortimore G. E. Lysosomal sequestration of intracellular protein as a regulatory step in hepatic proteolysis. J Biol Chem. 1977 Oct 10;252(19):6955–6961. [PubMed] [Google Scholar]
  44. Wattiaux R., Wattiaux-De Coninck S., Ronveaux-dupal M. F., Dubois F. Isolation of rat liver lysosomes by isopycnic centrifugation in a metrizamide gradient. J Cell Biol. 1978 Aug;78(2):349–368. doi: 10.1083/jcb.78.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wirtz K. W., Kamp H. H., van Deenen L. L. Isolation of a protein from beef liver which specifically stimulates the exchange of phosphatidylcholine. Biochim Biophys Acta. 1972 Aug 9;274(2):606–617. doi: 10.1016/0005-2736(72)90207-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES