Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Apr 1;93(1):175–189. doi: 10.1083/jcb.93.1.175

On the structural organization of isolated bovine lens fiber junctions

PMCID: PMC2112112  PMID: 7068755

Abstract

Junctions between fiber cells of bovine lenses have been isolated in milligram quantities, without using detergents or proteases. The structure of the isolated junctions has been studied by thin-section, negative-stain, and freeze-fracture electron microscopy and by x-ray diffraction. The junctions are large and most often have an undulating surface topology as determined by thin sectioning and freeze-fracture. These undulations resemble the tongue-and-groove interdigitations between lens fiber cells previously seen by others (D. H. Dickson and G. W. Crock, 1972, Invest. Ophthalmol. 11:809-815). In sections, the isolated junctions display a pentalamellar structure approximately 13- 14 nm in overall thickness, which is significantly thinner than liver gap junctions. Each junctional membrane contains in the plane of the lipid bilayers distinct units arranged in a square lattice with a center-to-center spacing of 6.6 nm. Freeze-fracture replicas of the junctions fractured transversely show that the repeating units extend across the entire thickness of each membrane. Each unit is probably constructed from four identical subunits, with each subunit containing a protein of an apparent molecular weight of 27,000. We conclude that the lens junctions are structurally and chemically, different from gap junctions and could represent a new kind of intercellular contact, not simply another crystalline state of the gap junction protein.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedetti E. L., Dunia I., Bentzel C. J., Vermorken A. J., Kibbelaar M., Bloemendal H. A portrait of plasma membrane specializations in eye lens epithelium and fibers. Biochim Biophys Acta. 1976 Dec 14;457(3-4):353–384. doi: 10.1016/0304-4157(76)90004-6. [DOI] [PubMed] [Google Scholar]
  2. Broekhuyse R. M., Kuhlmann E. D., Bijvelt J., Verkleij A. J., Ververgaert P. H. Lens membranes III. Freeze fracture morphology and composition of bovine lens fibre membranes in relation to ageing. Exp Eye Res. 1978 Feb;26(2):147–156. doi: 10.1016/0014-4835(78)90112-4. [DOI] [PubMed] [Google Scholar]
  3. Broekhuyse R. M., Kuhlmann E. D. Lens membranes XI. Some properties of human lens main intrinsic protein (MIP) and its enzymatic conversion into a 22 000 dalton polypeptide. Exp Eye Res. 1980 Mar;30(3):305–310. doi: 10.1016/0014-4835(80)90011-1. [DOI] [PubMed] [Google Scholar]
  4. Broekhuyse R. M., Kuhlmann E. D. Lens membranes. IV. Preparative isolation and characterization of membranes and various membrane proteins from calf lens. Exp Eye Res. 1978 Mar;26(3):305–320. doi: 10.1016/0014-4835(78)90077-5. [DOI] [PubMed] [Google Scholar]
  5. Broekhuyse R. M., Kuhlmann E. D., Winkens H. J. Lens membranes VII. MIP is an immunologically specific component of lens fiber membranes and is identical with 26K band protein. Exp Eye Res. 1979 Sep;29(3):303–313. doi: 10.1016/0014-4835(79)90009-5. [DOI] [PubMed] [Google Scholar]
  6. COHEN A. I. Electron microscopic observations on the lens of the neonatal albino mouse. Am J Anat. 1958 Sep;103(2):219–245. doi: 10.1002/aja.1001030205. [DOI] [PubMed] [Google Scholar]
  7. COHEN A. I. THE ELECTRON MICROSCOPY OF THE NORMAL HUMAN LENS. Invest Ophthalmol. 1965 Aug;4:433–446. [PubMed] [Google Scholar]
  8. Caspar D. L., Goodenough D. A., Makowski L., Phillips W. C. Gap junction structures. I. Correlated electron microscopy and x-ray diffraction. J Cell Biol. 1977 Aug;74(2):605–628. doi: 10.1083/jcb.74.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Costello M. J. Ultra-rapid freezing of thin biological samples. Scan Electron Microsc. 1980;(Pt 2):361–370. [PubMed] [Google Scholar]
  10. Dickson D. H., Crock G. W. Interlocking patterns on primate lens fibers. Invest Ophthalmol. 1972 Oct;11(10):809–815. [PubMed] [Google Scholar]
  11. Erickson H. P., Voter W. A., Leonard K. Image reconstruction in electron microscopy: enhancement of periodic structure by optical filtering. Methods Enzymol. 1978;49:39–63. doi: 10.1016/s0076-6879(78)49006-8. [DOI] [PubMed] [Google Scholar]
  12. Goodenough D. A., Dick J. S., 2nd, Lyons J. E. Lens metabolic cooperation: a study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy. J Cell Biol. 1980 Aug;86(2):576–589. doi: 10.1083/jcb.86.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goodenough D. A. Lens gap junctions: a structural hypothesis for nonregulated low-resistance intercellular pathways. Invest Ophthalmol Vis Sci. 1979 Nov;18(11):1104–1122. [PubMed] [Google Scholar]
  14. Henderson D., Eibl H., Weber K. Structure and biochemistry of mouse hepatic gap junctions. J Mol Biol. 1979 Aug 5;132(2):193–218. doi: 10.1016/0022-2836(79)90391-7. [DOI] [PubMed] [Google Scholar]
  15. Henderson R. The structure of the purple membrane from Halobacterium hallobium: analysis of the X-ray diffraction pattern. J Mol Biol. 1975 Apr 5;93(2):123–138. doi: 10.1016/0022-2836(75)90123-0. [DOI] [PubMed] [Google Scholar]
  16. Hertzberg E. L. Biochemical and immunological approaches to the study of gap junctional communication. In Vitro. 1980 Dec;16(12):1057–1067. doi: 10.1007/BF02619256. [DOI] [PubMed] [Google Scholar]
  17. Horwitz J., Wong M. M. Peptide mapping by limited proteolysis in sodium dodecyl sulfate of the main intrinsic polypeptides isolated from human and bovine lens plasma membranes. Biochim Biophys Acta. 1980 Mar 26;622(1):134–143. doi: 10.1016/0005-2795(80)90165-8. [DOI] [PubMed] [Google Scholar]
  18. Kistler J., Bullivant S. Lens gap junctions and orthogonal arrays are unrelated. FEBS Lett. 1980 Feb 25;111(1):73–78. doi: 10.1016/0014-5793(80)80764-2. [DOI] [PubMed] [Google Scholar]
  19. Kistler J., Bullivant S. The connexon order in isolated lens gap junctions. J Ultrastruct Res. 1980 Jul;72(1):27–38. doi: 10.1016/s0022-5320(80)90132-x. [DOI] [PubMed] [Google Scholar]
  20. Kuszak J., Maisel H., Harding C. V. Gap junctions of chick lens fiber cells. Exp Eye Res. 1978 Oct;27(4):495–498. doi: 10.1016/0014-4835(78)90026-x. [DOI] [PubMed] [Google Scholar]
  21. Kuwabara T. The maturation of the lens cell: a morphologic study. Exp Eye Res. 1975 May;20(5):427–443. doi: 10.1016/0014-4835(75)90085-8. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. LUZZATI V., HUSSON F. The structure of the liquid-crystalline phasis of lipid-water systems. J Cell Biol. 1962 Feb;12:207–219. doi: 10.1083/jcb.12.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Landis D. M., Reese T. S. Astrocyte membrane structure: changes after circulatory arrest. J Cell Biol. 1981 Mar;88(3):660–663. doi: 10.1083/jcb.88.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lecuyer H., Dervichian D. G. Structure of aqueous mixtures of lecithin and cholesterol. J Mol Biol. 1969 Oct 14;45(1):39–57. doi: 10.1016/0022-2836(69)90208-3. [DOI] [PubMed] [Google Scholar]
  26. Leeson T. S. Lens of the rat eye: an electron microscope and freeze-etch study. Exp Eye Res. 1971 Jan;11(1):78–82. doi: 10.1016/s0014-4835(71)80067-2. [DOI] [PubMed] [Google Scholar]
  27. Makowski L., Caspar D. L., Phillips W. C., Goodenough D. A. Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol. 1977 Aug;74(2):629–645. doi: 10.1083/jcb.74.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Matsuto T. [Scanning electron microscopic studies on the normal and senile cataractous human lenses (author's transl)]. Nippon Ganka Gakkai Zasshi. 1973 Aug;77(8):853–872. [PubMed] [Google Scholar]
  29. Okinami S. Freeze-fracture replica of the primate lens fibers. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1978 Dec 8;209(1):51–58. doi: 10.1007/BF00419162. [DOI] [PubMed] [Google Scholar]
  30. PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
  31. Peracchia C. Calcium effects on gap junction structure and cell coupling. Nature. 1978 Feb 16;271(5646):669–671. doi: 10.1038/271669a0. [DOI] [PubMed] [Google Scholar]
  32. Peracchia C., Dulhunty A. F. Low resistance junctions in crayfish. Structural changes with functional uncoupling. J Cell Biol. 1976 Aug;70(2 Pt 1):419–439. doi: 10.1083/jcb.70.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Peracchia C., Peracchia L. L. Gap junction dynamics: reversible effects of divalent cations. J Cell Biol. 1980 Dec;87(3 Pt 1):708–718. doi: 10.1083/jcb.87.3.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Peracchia C., Peracchia L. L. Gap junction dynamics: reversible effects of hydrogen ions. J Cell Biol. 1980 Dec;87(3 Pt 1):719–727. doi: 10.1083/jcb.87.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Philipson B. T., Hanninen L., Balazs E. A. Cell contacts in human and bovine lenses. Exp Eye Res. 1975 Sep;21(3):205–219. doi: 10.1016/0014-4835(75)90091-3. [DOI] [PubMed] [Google Scholar]
  36. Rae J. L. The electrophysiology of the crystalline lens. Curr Top Eye Res. 1979;1:37–90. [PubMed] [Google Scholar]
  37. Robenek H., Greven H. Orthogonal arrays of intramembranous particles in the basal plasma membranes of the epidermis of larval Salamandra salamandra (L.) (Amphibia, Urodela). J Ultrastruct Res. 1980 Jul;72(1):119–122. doi: 10.1016/s0022-5320(80)90141-0. [DOI] [PubMed] [Google Scholar]
  38. Teller D. C. Accessible area, packing volumes and interaction surfaces of globular proteins. Nature. 1976 Apr 22;260(5553):729–731. doi: 10.1038/260729a0. [DOI] [PubMed] [Google Scholar]
  39. WANKO T., GAVIN M. A. The fine structure of the lens epithelium; an electron microscopic study. AMA Arch Ophthalmol. 1958 Nov;60(5):868–879. doi: 10.1001/archopht.1958.00940080888007. [DOI] [PubMed] [Google Scholar]
  40. Waggoner P. R., Maisel H. Immunofluorescent study of a chick lens fiber cell membrane polypeptide. Exp Eye Res. 1978 Aug;27(2):151–157. doi: 10.1016/0014-4835(78)90085-4. [DOI] [PubMed] [Google Scholar]
  41. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  42. Wilkins M. H., Blaurock A. E., Engelman D. M. Bilayer structure in membranes. Nat New Biol. 1971 Mar 17;230(11):72–76. doi: 10.1038/newbio230072a0. [DOI] [PubMed] [Google Scholar]
  43. Willis N. R., Hollenberg M. J., Braekevelt C. R. The fine structure of the lens of the fetal rat. Can J Ophthalmol. 1969 Jul;4(3):307–318. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES