Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Apr 1;93(1):223–229. doi: 10.1083/jcb.93.1.223

Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae

PMCID: PMC2112114  PMID: 6121819

Abstract

An affinity-purified, monospecific rabbit antibody against soluble human milk galactosyltransferase was used to localize the enzyme in HeLa cells by immunofluorescence and by the protein A-gold technique at the electron microscope level. Specific immunofluorescence was observed in a juxtanuclear cytoplasmic region which was identified, on immunostained thin sections of low-temperature Lowicryl K4M-embedded HeLa cells, as Golgi apparatus. Label by gold particles was limited to two to three trans cisternae of the Golgi apparatus, indicating a compartmentalization of galactosyltransferase in the cisternal stack. Combination of preembedding thiamine pyrophosphatase cytochemistry, with postembedding immunostaining for galactosyltransferase proved codistribution of the two enzymes. However, the acid phosphatase- positive, trans-most cisterna was negative for galactosyltransferase. The close topological association of both galactosyltransferase and thiamine pyrophosphatase (or nucleoside diphosphatase) suggests a concerted action of both enzymes in glycosylation.

Full Text

The Full Text of this article is available as a PDF (987.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett G., O'Shaughnessy D. The site of incorporation of sialic acid residues into glycoproteins and the subsequent fates of these molecules in various rat and mouse cell types as shown by radioautography after injection of [3H]N-acetylmannosamine. I. Observations in hepatocytes. J Cell Biol. 1981 Jan;88(1):1–15. doi: 10.1083/jcb.88.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berger E. G., Mandel T., Schilt U. Immunohistochemical localization of galactosyltransferase in human fibroblasts and HeLa cells. J Histochem Cytochem. 1981 Mar;29(3):364–370. doi: 10.1177/29.3.6787115. [DOI] [PubMed] [Google Scholar]
  3. Bretz R., Bretz H., Palade G. E. Distribution of terminal glycosyltransferases in hepatic Golgi fractions. J Cell Biol. 1980 Jan;84(1):87–101. doi: 10.1083/jcb.84.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ehrenreich J. H., Bergeron J. J., Siekevitz P., Palade G. E. Golgi fractions prepared from rat liver homogenates. I. Isolation procedure and morphological characterization. J Cell Biol. 1973 Oct;59(1):45–72. doi: 10.1083/jcb.59.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elting J. J., Chen W. W., Lennarz W. J. Characterization of a glucosidase involved in an initial step in the processing of oligosaccharide chains. J Biol Chem. 1980 Mar 25;255(6):2325–2331. [PubMed] [Google Scholar]
  6. Fleischer B., Fleischer S. Preparation and characterization of golgi membranes from rat liver. Biochim Biophys Acta. 1970 Dec 1;219(2):301–319. doi: 10.1016/0005-2736(70)90209-9. [DOI] [PubMed] [Google Scholar]
  7. Gerber A. C., Kozdrowski I., Wyss S. R., Berger E. G. The charge heterogeneity of soluble human galactosyltransferases isolated from milk, amniotic fluid and malignant ascites. Eur J Biochem. 1979 Feb 1;93(3):453–460. doi: 10.1111/j.1432-1033.1979.tb12843.x. [DOI] [PubMed] [Google Scholar]
  8. Harpaz N., Schachter H. Control of glycoprotein synthesis. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi alpha-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine: alpha-D-mannoside beta 2-N-acetylglucosaminyltransferase I. J Biol Chem. 1980 May 25;255(10):4894–4902. [PubMed] [Google Scholar]
  9. Hino Y., Asano A., Sato R. Biochemical studies on rat liver Golgi apparatus. III. Subfractionation of fragmented Golgi apparatus by counter-current distribution. J Biochem. 1978 Apr;83(4):935–942. doi: 10.1093/oxfordjournals.jbchem.a132020. [DOI] [PubMed] [Google Scholar]
  10. Kuhn N. J., White A. The role of nucleoside diphosphatase in a uridine nucleotide cycle associated with lactose synthesis in rat mammary-gland Golgi apparatus. Biochem J. 1977 Dec 15;168(3):423–433. doi: 10.1042/bj1680423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morre J., Merlin L. M., Keenan T. W. Localization of glycosyl transferase activities in a Golgi apparatus-rich fraction isolated from rat liver. Biochem Biophys Res Commun. 1969 Nov 20;37(5):813–819. doi: 10.1016/0006-291x(69)90964-4. [DOI] [PubMed] [Google Scholar]
  12. Morré D. J., Kartenbeck J., Franke W. W. Membrane flow and intercoversions among endomembranes. Biochim Biophys Acta. 1979 Apr 23;559(1):71–52. doi: 10.1016/0304-4157(79)90008-x. [DOI] [PubMed] [Google Scholar]
  13. NOVIKOFF A. B., GOLDFISCHER S. Nucleosidediphosphatase activity in the Golgi apparatus and its usefulness for cytological studies. Proc Natl Acad Sci U S A. 1961 Jun 15;47:802–810. doi: 10.1073/pnas.47.6.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Orci L., Montesano R., Meda P., Malaisse-Lagae F., Brown D., Perrelet A., Vassalli P. Heterogeneous distribution of filipin--cholesterol complexes across the cisternae of the Golgi apparatus. Proc Natl Acad Sci U S A. 1981 Jan;78(1):293–297. doi: 10.1073/pnas.78.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Poort C. In situ localization of galactosyltransferase in surface mucous cells of the rat stomach. J Histochem Cytochem. 1977 Jan;25(1):57–60. doi: 10.1177/25.1.13122. [DOI] [PubMed] [Google Scholar]
  16. Roth J., Bendayan M., Carlemalm E., Villiger W., Garavito M. Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem. 1981 May;29(5):663–671. doi: 10.1177/29.5.6166664. [DOI] [PubMed] [Google Scholar]
  17. Roth J., Bendayan M., Orci L. Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Histochem Cytochem. 1978 Dec;26(12):1074–1081. doi: 10.1177/26.12.366014. [DOI] [PubMed] [Google Scholar]
  18. Roth J., Ravazzola M., Bendayan M., Orci L. Application of the protein A-gold technique for electron microscopic demonstration of polypeptide hormones. Endocrinology. 1981 Jan;108(1):247–253. doi: 10.1210/endo-108-1-247. [DOI] [PubMed] [Google Scholar]
  19. Roth J., Thorens B., Hunziker W., Norman A. W., Orci L. Vitamin D--dependent calcium binding protein: immunocytochemical localization in chick kidney. Science. 1981 Oct 9;214(4517):197–200. doi: 10.1126/science.7025212. [DOI] [PubMed] [Google Scholar]
  20. Rothman J. E. The golgi apparatus: two organelles in tandem. Science. 1981 Sep 11;213(4513):1212–1219. doi: 10.1126/science.7268428. [DOI] [PubMed] [Google Scholar]
  21. Tartakoff A. M. The Golgi complex: crossroads for vesicular traffic. Int Rev Exp Pathol. 1980;22:227–251. [PubMed] [Google Scholar]
  22. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yamazaki M., Hayaishi O. Allosteric properties of nucleoside diphosphatase and its identity with thiamine pyrophosphatase. J Biol Chem. 1968 Jun 10;243(11):2934–2942. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES