Abstract
There is morphological and biochemical evidence that insulin is internalized in hepatocytes. The present study was designed to investigate the fate of the insulin receptor itself, subsequently to the initial binding step of the hormone to the hepatocyte plasma membrane. The insulin receptor was labeled with a 125I-photoreactive insulin analogue (B2[2-nitro,4-azidophenylacetyl]des-PheB1-insulin). This photoprobe was covalently coupled to the receptor by UV irradiation of hepatocytes after an initial binding step of 2-4 h at 15 degrees C. At this temperature, only limited (approximately 20%) internalization of the ligand occurred. In a second step, hepatocytes were resuspended in insulin-free buffer and further incubated for 2-4 h at 37 degrees C. After h at 37 degrees C, no significant radioactivity could be detected in non-UV-irradiated cells, whereas 12-15 % of the radioactivity initially bound remained associated to UV-irradiated cells. Morphological analysis after electron microscopy revealed that approximately 70% of this radioactivity was internalized and preferentially associated with lysosomal structures. SDS PAGE analysis under reducing conditions revealed that most of the radioactivity was associated with a 130,000-dalton band, previously identified as the major subunit of the insulin receptor in a variety of tissues. Internalization of the labeled insulin-receptor complex at the end of the 37 degrees C incubation was further demonstrated by its inaccessibility to trypsin. Conversely, at the end of the association step, the receptor (also characterized as a predominant 130,000-dalton species) was localized on the cell surface since it was cleaved by trypsin. We conclude that in hepatocytes the insulin receptor is internalized with insulin.
Full Text
The Full Text of this article is available as a PDF (711.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carpentier J. L., Gorden P., Freychet P., Canivet B., Orci L. The fate of [125I]iodoepidermal growth factor in isolated hepatocytes: a quantitative electron microscopic autoradiographic study. Endocrinology. 1981 Sep;109(3):768–775. doi: 10.1210/endo-109-3-768. [DOI] [PubMed] [Google Scholar]
- Carpentier J. L., Gorden P., Freychet P., Le Cam A., Orci L. Lysosomal association of internalized 125I-insulin in isolated rat hepatocytes. Direct demonstration by quantitative electron microscopic autoradiography. J Clin Invest. 1979 Jun;63(6):1249–1261. doi: 10.1172/JCI109420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fehlmann M., Le Cam A., Freychet P. Insulin and glucagon stimulation of amino acid transport in isolated rat hepatocytes. Synthesis of a high affinity component of transport. J Biol Chem. 1979 Oct 25;254(20):10431–10437. [PubMed] [Google Scholar]
- Fehlmann M., Morin O., Kitabgi P., Freychet P. Insulin and glucagon receptors of isolated rat hepatocytes: comparison between hormone binding and amino acid transport stimulation. Endocrinology. 1981 Jul;109(1):253–261. doi: 10.1210/endo-109-1-253. [DOI] [PubMed] [Google Scholar]
- Goldfine I. D., Jones A. L., Hradek G. T., Wong K. Y., Mooney J. S. Entry of insulin into human cultured lymphocytes: electron microscope autoradiographic analysis. Science. 1978 Nov 17;202(4369):760–763. doi: 10.1126/science.715440. [DOI] [PubMed] [Google Scholar]
- Gorden P., Carpentier J. L., Freychet P. O., Orci L. Internalization of polypeptide hormones: mechanism, intracellular localization and significance. Diabetologia. 1980 Apr;18(4):263–274. doi: 10.1007/BF00251003. [DOI] [PubMed] [Google Scholar]
- Hofmann C., Ji T. H., Miller B., Steiner D. F. Photoaffinity labeling of the insulin receptor in H4 hepatoma cells: lack of cellular receptor processing. J Supramol Struct Cell Biochem. 1981;15(1):1–13. doi: 10.1002/jsscb.1981.380150102. [DOI] [PubMed] [Google Scholar]
- Jacobs S., Hazum E., Shechter Y., Cuatrecasas P. Insulin receptor: covalent labeling and identification of subunits. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4918–4921. doi: 10.1073/pnas.76.10.4918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan J. Polypeptide-binding membrane receptors: analysis and classification. Science. 1981 Apr 3;212(4490):14–20. doi: 10.1126/science.6259730. [DOI] [PubMed] [Google Scholar]
- Kasuga M., van Obberghen E., Yamada K. M., Harrison L. C. Autoantibodies against the insulin receptor recognize the insulin binding subunits of an oligomeric receptor. Diabetes. 1981 Apr;30(4):354–357. doi: 10.2337/diab.30.4.354. [DOI] [PubMed] [Google Scholar]
- Kono T., Barham F. W. The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin. Studies with intact and trypsin-treated fat cells. J Biol Chem. 1971 Oct 25;246(20):6210–6216. [PubMed] [Google Scholar]
- LeCam A., Nicolas J. C., Singh T. J., Cabral F., Pastan I., Gottesman M. M. Cyclic AMP-dependent phosphorylation in intact cells and in cell-free extracts from Chinese hamster ovary cells. Studies with wild type and cyclic AMP-resistant mutants. J Biol Chem. 1981 Jan 25;256(2):933–941. [PubMed] [Google Scholar]
- Pilch P. F., Czech M. P. Hormone binding alters the conformation of the insulin receptor. Science. 1980 Dec 5;210(4474):1152–1153. doi: 10.1126/science.7003712. [DOI] [PubMed] [Google Scholar]
- Pilch P. F., Czech M. P. Interaction of cross-linking agents with the insulin effector system of isolated fat cells. Covalent linkage of 125I-insulin to a plasma membrane receptor protein of 140,000 daltons. J Biol Chem. 1979 May 10;254(9):3375–3381. [PubMed] [Google Scholar]
- Schlessinger J., Shechter Y., Willingham M. C., Pastan I. Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2659–2663. doi: 10.1073/pnas.75.6.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider Y. J., Tulkens P., de Duve C., Trouet A. Fate of plasma membrane during endocytosis. II. Evidence for recycling (shuttle) of plasma membrane constituents. J Cell Biol. 1979 Aug;82(2):466–474. doi: 10.1083/jcb.82.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seals J. R., Czech M. P. Evidence that insulin activates an intrinsic plasma membrane protease in generating a secondary chemical mediator. J Biol Chem. 1980 Jul 25;255(14):6529–6531. [PubMed] [Google Scholar]
- Van Obberghen E., Ksauga M., Le Cam A., Hedo J. A., Itin A., Harrison L. C. Biosynthetic labeling of insulin receptor: studies of subunits in cultured human IM-9 lymphocytes. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1052–1056. doi: 10.1073/pnas.78.2.1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wisher M. H., Baron M. D., Jones R. H., Sönksen P. H. Photoreactive insulin analogues used to characterise the insulin receptor. Biochem Biophys Res Commun. 1980 Jan 29;92(2):492–498. doi: 10.1016/0006-291x(80)90360-5. [DOI] [PubMed] [Google Scholar]
- Yip C. C., Yeung C. W., Moule M. L. Photoaffinity labeling of insulin receptor of rat adiopocyte plasma membrane. J Biol Chem. 1978 Mar 25;253(6):1743–1745. [PubMed] [Google Scholar]
- Yip C. C., Yeung C. W., Moule M. L. Photoaffinity labeling of insulin receptor proteins of liver plasma membrane preparations. Biochemistry. 1980 Jan 8;19(1):70–76. doi: 10.1021/bi00542a011. [DOI] [PubMed] [Google Scholar]