Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jun 1;93(3):743–750. doi: 10.1083/jcb.93.3.743

Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology

PMCID: PMC2112121  PMID: 6288734

Abstract

We describe the isolation and the ultrastructural characteristics of adult bovine articular chondrocytes in vitro. Slices of bovine articular cartilage undergo sequential digestions with pronase and collagenase in order to release cells. Chondrocytes are plated at high density (1 x 10(5) cells/cm2) in culture dishes or roller bottles with Ham's F-12 medium, supplemented with 10% fetal bovine serum. Before culture, chondrocytes are freed of surrounding territorial matrix. Within the first few days of culture they re-establish a territorial matrix. As time progresses, chondrocytes synthesize both territorial and extraterritorial matrices. The matrices are rich in collagen fibrils and ruthenium red-positive proteoglycans. These features are most apparent in mass roller cultures in which aggregates of cells and matrix appear as long streaks and nodules. This morphology reveals an organization of chondrocytes and their matrices that is similar to that of the parent articular cartilage in vivo.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott J., Holtzer H. The loss of phenotypic traits by differentiated cells. 3. The reversible behavior of chondrocytes in primary cultures. J Cell Biol. 1966 Mar;28(3):473–487. doi: 10.1083/jcb.28.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benya P. D., Padilla S. R., Nimni M. E. The progeny of rabbit articular chondrocytes synthesize collagen types I and III and type I trimer, but not type II. Verifications by cyanogen bromide peptide analysis. Biochemistry. 1977 Mar 8;16(5):865–872. doi: 10.1021/bi00624a009. [DOI] [PubMed] [Google Scholar]
  3. Caplan A. I. Effects of the nicotinamide-sensitive teratogen3-acetylpyridine on chick limb cells in culture. Exp Cell Res. 1970 Oct;62(2):341–355. doi: 10.1016/0014-4827(70)90564-1. [DOI] [PubMed] [Google Scholar]
  4. Chacko S., Abbott J., Holtzer S., Holtzer H. The loss of phenotypic traits by differentiated cells. VI. Behavior of the progeny of a single chondrocyte. J Exp Med. 1969 Aug 1;130(2):417–442. doi: 10.1084/jem.130.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheung H. S., Harvey W., Benya P. D., Nimni M. E. New collagen markers of 'derepression' synthesized by rabbit articular chondrocytes in culture. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1371–1378. doi: 10.1016/0006-291x(76)90347-8. [DOI] [PubMed] [Google Scholar]
  6. Coon H. G. Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc Natl Acad Sci U S A. 1966 Jan;55(1):66–73. doi: 10.1073/pnas.55.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deshmukh K., Kline W. H. Characterization of collagen and its precursors synthesized by rabbit-articular-cartilage cells in various culture systems. Eur J Biochem. 1976 Oct 1;69(1):117–123. doi: 10.1111/j.1432-1033.1976.tb10864.x. [DOI] [PubMed] [Google Scholar]
  8. Handley C. J., Bateman J. F., Oakes B. W., Lowther D. A. Characterization of the collagen synthesized by cultured cartilage cells. Biochim Biophys Acta. 1975 Apr 29;386(2):444–450. doi: 10.1016/0005-2795(75)90287-1. [DOI] [PubMed] [Google Scholar]
  9. Handley C. J., Lowther D. A. Inhibition of proteoglycan biosynthesis by hyaluronic acid in chondrocytes in cell culture. Biochim Biophys Acta. 1976 Aug 24;444(1):69–74. doi: 10.1016/0304-4165(76)90224-5. [DOI] [PubMed] [Google Scholar]
  10. Hascall V. C., Oegema T. R., Brown M., Caplan A. I. Isolation and characterization of proteoglycans from chick limb bud chondrocytes grown in vitro. J Biol Chem. 1976 Jun 10;251(11):3511–3519. [PubMed] [Google Scholar]
  11. KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kimura J. H., Osdoby P., Caplan A. I., Hascall V. C. Electron microscopic and biochemical studies of proteoglycan polydispersity in chick limb bud chondrocyte cultures. J Biol Chem. 1978 Jul 10;253(13):4721–4729. [PubMed] [Google Scholar]
  13. Klagsbrun M. Large-scale preparation of chondrocytes. Methods Enzymol. 1979;58:560–564. doi: 10.1016/s0076-6879(79)58171-3. [DOI] [PubMed] [Google Scholar]
  14. Nevo Z., Dorfman A. Stimulation of chondromucoprotein synthesis in chondrocytes by extracellular chondromucoprotein. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2069–2072. doi: 10.1073/pnas.69.8.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Norby D. P., Malemud C. J., Sokoloff L. Differences in the collagen types synthesized by lapine articular chondrocytes in spinner and monolayer culture. Arthritis Rheum. 1977 Mar;20(2):709–716. doi: 10.1002/art.1780200211. [DOI] [PubMed] [Google Scholar]
  16. Oegema T. R., Jr, Hascall V. C., Dziewiatkowski D. D. Isolation and characterization of proteoglycans from the swarm rat chondrosarcoma. J Biol Chem. 1975 Aug 10;250(15):6151–6159. [PubMed] [Google Scholar]
  17. Pauli B., Weinstein R. S., Soble L. W., Alroy J. Freeze-fracture of monolayer cultures. J Cell Biol. 1977 Mar;72(3):763–769. doi: 10.1083/jcb.72.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schindler F. H., Ose M. A., Solursh M. The synthesis of cartilage collagen by rabbit and human chondrocytes in primary cell culture. In Vitro. 1976 Jan;12(1):44–47. doi: 10.1007/BF02832792. [DOI] [PubMed] [Google Scholar]
  19. Sokoloff L., Malemud C. J., Green W. T., Jr Sulfate incorporation by articular chondrocytes in monolayer culture. Arthritis Rheum. 1970 Mar-Apr;13(2):118–124. doi: 10.1002/art.1780130203. [DOI] [PubMed] [Google Scholar]
  20. Solursh M., Reiter R. S. Evidence for histogenic interactions during in vitro limb chondrogenesis. Dev Biol. 1980 Jul;78(1):141–150. doi: 10.1016/0012-1606(80)90324-3. [DOI] [PubMed] [Google Scholar]
  21. Srivastava V. M., MaleMud C. J., Sokoloff L. Chondroid expression by lapine articular chondrocytes in spinner culture following monolayer growth. Connect Tissue Res. 1974;2(2):127–136. doi: 10.3109/03008207409152098. [DOI] [PubMed] [Google Scholar]
  22. Trippel S. B., Ehrlich M. G., Lippiello L., Mankin H. J. Characterization of chondrocytes from bovine articular cartilage: I. Metabolic and morphological experimental studies. J Bone Joint Surg Am. 1980 Jul;62(5):816–820. [PubMed] [Google Scholar]
  23. von der Mark K., Conrad G. Cartilage cell differentiation: review. Clin Orthop Relat Res. 1979 Mar-Apr;(139):185–205. [PubMed] [Google Scholar]
  24. von der Mark K., Gauss V., von der Mark H., Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977 Jun 9;267(5611):531–532. doi: 10.1038/267531a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES