Abstract
Cytoplasmic streaming in characean algae is thought to be generated by interaction between subcortical actin bundles and endoplasmic myosin. Most of the existing evidence supporting this hypothesis is of a structural rather than functional nature. To obtain evidence bearing on the possible function of actin and myosin in streaming, we used perfusion techniques to introduce a number of contractile and related proteins into the cytoplasm of streaming Chara cells. Exogenous actin added at concentrations as low as 0.1 mg/ml is a potent inhibitor of streaming. Deoxyribonuclease I (DNase I), an inhibitor of amoeboid movement and fast axonal transport, does not inhibit streaming in Chara. Fluorescein-DNase I stains stress cables and microfilaments in mammalian cells but does not bind to Chara actin bundles, thus suggesting that the lack of effect on streaming is due to a surprising lack of DNase I affinity for Chara actin bundles. Heavy meromyosin (HMM) does not inhibit streaming, but fluorescein-HMM (FL-HMM), having a partially disabled EDTA ATPase, does. Quantitative fluorescence micrography provides evidence that inhibition of streaming by FL-HMM may be due to a tendency for FL-HMM to remain bound to Chara actin bundles even in the presence of MgATP. Perfusion with various control proteins, including tubulin, ovalbumin, bovine serum albumin, and irrelevant antibodies, does not inhibit streaming. These results support the hypothesis that actin and myosin function to generate cytoplasmic streaming in Chara.
Full Text
The Full Text of this article is available as a PDF (969.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen N. S., Allen R. D. Cytoplasmic streaming in green plants. Annu Rev Biophys Bioeng. 1978;7:497–526. doi: 10.1146/annurev.bb.07.060178.002433. [DOI] [PubMed] [Google Scholar]
- Asai D. J., Brokaw C. J. Effects of antibodies against tubulin on the movement of reactivated sea urchin sperm flagella. J Cell Biol. 1980 Oct;87(1):114–123. doi: 10.1083/jcb.87.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barak L. S., Nothnagel E. A., DeMarco E. F., Webb W. W. Differential staining of actin in metaphase spindles with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin and fluorescent DNase: is actin involved in chromosomal movement? Proc Natl Acad Sci U S A. 1981 May;78(5):3034–3038. doi: 10.1073/pnas.78.5.3034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barak L. S., Yocum R. R., Nothnagel E. A., Webb W. W. Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin. Proc Natl Acad Sci U S A. 1980 Feb;77(2):980–984. doi: 10.1073/pnas.77.2.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradley M. O. Microfilaments and cytoplasmic streaming: inhibition of streaming with cytochalasin. J Cell Sci. 1973 Jan;12(1):327–343. doi: 10.1242/jcs.12.1.327. [DOI] [PubMed] [Google Scholar]
- Cande W. Z. A permeabilized cell model for studying cytokinesis using mammalian tissue culture cells. J Cell Biol. 1980 Nov;87(2 Pt 1):326–335. doi: 10.1083/jcb.87.2.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke M., Spudich J. A. Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Annu Rev Biochem. 1977;46:797–822. doi: 10.1146/annurev.bi.46.070177.004053. [DOI] [PubMed] [Google Scholar]
- Crepeau R. H., McEwen B., Dykes G., Edelstein S. J. Structural studies on porcine brain tubulin in extended sheets. J Mol Biol. 1977 Oct 25;116(2):301–315. doi: 10.1016/0022-2836(77)90218-2. [DOI] [PubMed] [Google Scholar]
- Eisenberg E., Moos C. The adenosine triphosphatase activity of acto-heavy meromyosin. A kinetic analysis of actin activation. Biochemistry. 1968 Apr;7(4):1486–1489. doi: 10.1021/bi00844a035. [DOI] [PubMed] [Google Scholar]
- Gibbons B. H., Ogawa K., Gibbons I. R. The effect of antidynein 1 serum on the movement of reactivated sea urchin sperm. J Cell Biol. 1976 Dec;71(3):823–831. doi: 10.1083/jcb.71.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg D. J., Harris D. A., Lubit B. W., Schwartz J. H. Analysis of the mechanism of fast axonal transport by intracellular injection of potentially inhibitory macromolecules: evidence for a possible role of actin filaments. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7448–7452. doi: 10.1073/pnas.77.12.7448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene L. E., Eisenberg E. The binding of heavy meromyosin to F-actin. J Biol Chem. 1980 Jan 25;255(2):549–554. [PubMed] [Google Scholar]
- Higashi-Fujime S. Active movement in vitro of bundle of microfilaments isolated from Nitella cell. J Cell Biol. 1980 Dec;87(3 Pt 1):569–578. doi: 10.1083/jcb.87.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isenberg G., Schubert P., Kreutzberg G. W. Experimental approach to test the role of actin in axonal transport. Brain Res. 1980 Aug 4;194(2):588–593. doi: 10.1016/0006-8993(80)91247-0. [DOI] [PubMed] [Google Scholar]
- Ishiura M., Shibata-Sekiya K., Kato T., Tonomura Y. A chemically modified subfragment-1 of myosin from skeletal muscle as a novel tool for identifying the function of actomyosin in non-muscle cells. J Biochem. 1977 Jul;82(1):105–115. doi: 10.1093/oxfordjournals.jbchem.a131658. [DOI] [PubMed] [Google Scholar]
- JAROSCH R. Zur Mechanik der Protoplasmafibrillenbewegung. Biochim Biophys Acta. 1957 Jul;25(1):204–205. doi: 10.1016/0006-3002(57)90447-x. [DOI] [PubMed] [Google Scholar]
- Kato T., Tonomura Y. Identification of myosin in Nitella flexilis. J Biochem. 1977 Sep;82(3):777–782. doi: 10.1093/oxfordjournals.jbchem.a131754. [DOI] [PubMed] [Google Scholar]
- Kersey Y. M., Hepler P. K., Palevitz B. A., Wessells N. K. Polarity of actin filaments in Characean algae. Proc Natl Acad Sci U S A. 1976 Jan;73(1):165–167. doi: 10.1073/pnas.73.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreis T. E., Birchmeier W. Stress fiber sarcomeres of fibroblasts are contractile. Cell. 1980 Nov;22(2 Pt 2):555–561. doi: 10.1016/0092-8674(80)90365-7. [DOI] [PubMed] [Google Scholar]
- Lazarides E., Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4742–4746. doi: 10.1073/pnas.71.12.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mabuchi I., Okuno M. The effect of myosin antibody on the division of starfish blastomeres. J Cell Biol. 1977 Jul;74(1):251–263. doi: 10.1083/jcb.74.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meeusen R. L., Bennett J., Cande W. Z. Effect of microinjected N-ethylmaleimide-modified heavy meromyosin on cell division in amphibian eggs. J Cell Biol. 1980 Sep;86(3):858–865. doi: 10.1083/jcb.86.3.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meeusen R. L., Cande W. Z. N-ethylmaleimide-modified heavy meromyosin. A probe for actomyosin interactions. J Cell Biol. 1979 Jul;82(1):57–65. doi: 10.1083/jcb.82.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagai R., Hayama T. Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming in Chara internodal cells. J Cell Sci. 1979 Apr;36:121–136. doi: 10.1242/jcs.36.1.121. [DOI] [PubMed] [Google Scholar]
- Nagai R., Rebhun L. I. Cytoplasmic microfilaments in streaming Nitella cells. J Ultrastruct Res. 1966 Mar;14(5):571–589. doi: 10.1016/s0022-5320(66)80083-7. [DOI] [PubMed] [Google Scholar]
- Nothnagel E. A., Barak L. S., Sanger J. W., Webb W. W. Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara. J Cell Biol. 1981 Feb;88(2):364–372. doi: 10.1083/jcb.88.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palevitz B. A., Hepler P. K. Identification of actin in situ at the ectoplasm-endoplasm interface of Nitella. Microfilament-chloroplast association. J Cell Biol. 1975 Apr;65(1):29–38. doi: 10.1083/jcb.65.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger J. W. Changing patterns of actin localization during cell division. Proc Natl Acad Sci U S A. 1975 May;72(5):1913–1916. doi: 10.1073/pnas.72.5.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger J. W., Sanger J. M., Kreis T. E., Jockusch B. M. Reversible translocation of cytoplasmic actin into the nucleus caused by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5268–5272. doi: 10.1073/pnas.77.9.5268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Taylor D. L., Wang Y. L. Fluorescently labelled molecules as probes of the structure and function of living cells. Nature. 1980 Apr 3;284(5755):405–410. doi: 10.1038/284405a0. [DOI] [PubMed] [Google Scholar]
- Wang E., Goldberg A. R. Binding of deoxyribonuclease I to actin: a new way to visualize microfilament bundles in nonmuscle cells. J Histochem Cytochem. 1978 Sep;26(9):745–749. doi: 10.1177/26.9.361884. [DOI] [PubMed] [Google Scholar]
- Wang Y. L., Taylor D. L. Distribution of fluorescently labeled actin in living sea urchin eggs during early development. J Cell Biol. 1979 Jun;81(3):672–679. doi: 10.1083/jcb.81.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y. L., Taylor D. L. Preparation and characterization of a new molecular cytochemical probe: 5-iodoacetamidofluorescein-labeled actin. J Histochem Cytochem. 1980 Nov;28(11):1198–1206. doi: 10.1177/28.11.6107318. [DOI] [PubMed] [Google Scholar]
- Wehland J., Weber K., Gawlitta W., Stockem W. Effects of the actin-binding protein DNAase I on cytoplasmic streaming and ultrastructure of Amoeba proteus. An attempt to explain amoeboid movement. Cell Tissue Res. 1979 Jul 17;199(3):353–372. doi: 10.1007/BF00236075. [DOI] [PubMed] [Google Scholar]
- Williamson R. E. Cytoplasmic streaming in Chara: a cell model activated by ATP and inhibited by cytochalasin B. J Cell Sci. 1975 May;17(3):655–668. doi: 10.1242/jcs.17.3.655. [DOI] [PubMed] [Google Scholar]
- Williamson R. E. Filaments associated with the endoplasmic reticulum in the streaming cytoplasm of Chara corallina. Eur J Cell Biol. 1979 Dec;20(2):177–183. [PubMed] [Google Scholar]