Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jun 1;93(3):551–559. doi: 10.1083/jcb.93.3.551

Keratin alterations during embryonic epidermal differentiation: a presage of adult epidermal maturation

PMCID: PMC2112126  PMID: 6181071

Abstract

Differentiation of the epidermis during embryonic rabbit development was found to be accompanied by dramatic changes in keratin proteins. Immunofluorescent labeling with keratin antiserum revealed that the undifferentiated epithelium of 12-d embryos was already committed to making keratin proteins. At 18 d of embryogenesis, the epithelium contained keratin proteins in the molecular weight range of 40,000- 59,000. The stratification of the epithelium into two cell layers at 20 d of development coincided with the appearance of a 65-kdalton keratin. When a thick stratum corneum developed at 29 d, several additional keratins became prominent, most notably the large keratins (61- and 64- kdalton) and a 54-kdalton keratin. In addition, the 40-kdalton keratin, which had been present in earlier embryonic epidermis, disappeared. Newborn epidermis resembled that of a 29-d embryonic epidermis, with the exception of the appearance or increase in concentration of two more keratin species (46- and 50-kdalton). In vitro culturing of keratinocytes from 12- and 14-d embryonic skin demonstrated that these cells contained essentially the same keratin profiles as the undifferentiated epithelium of 18-d embryos (40-59 kdalton). Keratinocytes grown from older embryos contained increased amounts of keratin, similar to the in vivo situation, but did not synthesize the high molecular weight keratins. The changes observed during embryonic epidermal differentiation appear to be recapitulated during the sequential maturation steps of adult epidermis.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baden H. P., Lee L. D. Fibrous protein of human epidermis. J Invest Dermatol. 1978 Aug;71(2):148–151. doi: 10.1111/1523-1747.ep12546905. [DOI] [PubMed] [Google Scholar]
  2. Balmain A., Loehren D., Alonso A., Goerttler K. Protein synthesis during fetal development of mouse epidermis. II. Biosynthesis of histidine-rich and cystine-rich proteins in vitro and in vivo. Dev Biol. 1979 Dec;73(2):338–344. doi: 10.1016/0012-1606(79)90071-x. [DOI] [PubMed] [Google Scholar]
  3. Balmain A., Loehren D., Fischer J., Alonso A. Protein synthesis during fetal development of mouse epidermis. I. The appearance of "histidine-rich protein". Dev Biol. 1977 Oct 15;60(2):442–452. doi: 10.1016/0012-1606(77)90141-5. [DOI] [PubMed] [Google Scholar]
  4. Banks-Schlegel S. P., Green H. Studies on the development of the definitive cell type of embryonic epidermis using the cross-linked envelope as a differentiation marker. Dev Biol. 1980 Feb;74(2):275–285. doi: 10.1016/0012-1606(80)90430-3. [DOI] [PubMed] [Google Scholar]
  5. Banks-Schlegel S. P., Schlegel R., Pinkus G. S. Keratin protein domains within the human epidermis. Exp Cell Res. 1981 Dec;136(2):465–469. doi: 10.1016/0014-4827(81)90028-8. [DOI] [PubMed] [Google Scholar]
  6. Banks-Schlegel S., Green H. Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J Cell Biol. 1981 Sep;90(3):732–737. doi: 10.1083/jcb.90.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonneville M. A. Observations on epidermal differentiation in the fetal rat. Am J Anat. 1968 Jul;123(1):147–164. doi: 10.1002/aja.1001230107. [DOI] [PubMed] [Google Scholar]
  8. Breathnach A. S. The Herman Beerman lecture: embryology of human skin, a review of ultrastructural studies. J Invest Dermatol. 1971 Sep;57(3):133–143. doi: 10.1111/1523-1747.ep12261482. [DOI] [PubMed] [Google Scholar]
  9. Dale B. A., Stern I. B., Rabin M., Huang L. The identification of fibrous proteins in fetal rat epidermis by electrophoretic and immunologic techniques. J Invest Dermatol. 1976 Apr;66(4):230–235. doi: 10.1111/1523-1747.ep12482148. [DOI] [PubMed] [Google Scholar]
  10. Dale B. A., Stern I. B. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins of newbonr rat skin. II. Keratohyalin and stratum corneum proteins. J Invest Dermatol. 1975 Aug;65(2):223–227. doi: 10.1111/1523-1747.ep12598230. [DOI] [PubMed] [Google Scholar]
  11. Fuchs E., Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell. 1980 Apr;19(4):1033–1042. doi: 10.1016/0092-8674(80)90094-x. [DOI] [PubMed] [Google Scholar]
  12. Fuchs E., Green H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell. 1981 Sep;25(3):617–625. doi: 10.1016/0092-8674(81)90169-0. [DOI] [PubMed] [Google Scholar]
  13. Green H. Terminal differentiation of cultured human epidermal cells. Cell. 1977 Jun;11(2):405–416. doi: 10.1016/0092-8674(77)90058-7. [DOI] [PubMed] [Google Scholar]
  14. Hanson J. The histogenesis of the epidermis in the rat and mouse. J Anat. 1947 Apr;81(Pt 2):174–197. [PMC free article] [PubMed] [Google Scholar]
  15. Hashimoto K., Gross B. G., DiBella R. J., Lever W. F. The ultrastructure of the skin of human embryos. IV. The epidermis. J Invest Dermatol. 1966 Oct;47(4):317–335. doi: 10.1038/jid.1966.150. [DOI] [PubMed] [Google Scholar]
  16. Huang L. Y., Stern I. B., Clagett J. A., Chi E. Y. Two polypeptide chain constituents of the major protein of the cornified layer of newborn rat epidermis. Biochemistry. 1975 Aug 12;14(16):3573–3580. doi: 10.1021/bi00687a010. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lyne A. G., Hollis D. E. The structure and development of the epidermis in sheep fetuses. J Ultrastruct Res. 1972 Mar;38(5):444–458. doi: 10.1016/0022-5320(72)90082-2. [DOI] [PubMed] [Google Scholar]
  19. Rheinwald J. G., Green H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature. 1977 Feb 3;265(5593):421–424. doi: 10.1038/265421a0. [DOI] [PubMed] [Google Scholar]
  20. Rheinwald J. G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975 Nov;6(3):331–343. doi: 10.1016/s0092-8674(75)80001-8. [DOI] [PubMed] [Google Scholar]
  21. Savage C. R., Jr, Cohen S. Epidermal growth factor and a new derivative. Rapid isolation procedures and biological and chemical characterization. J Biol Chem. 1972 Dec 10;247(23):7609–7611. [PubMed] [Google Scholar]
  22. Schlegel R., Banks-Schlegel S., Pinkus G. S. Immunohistochemical localization of keratin in normal human tissues. Lab Invest. 1980 Jan;42(1):91–96. [PubMed] [Google Scholar]
  23. Skerrow D., Hunter I. Protein modifications during the keratinization of normal and psoriatic human epidermis. Biochim Biophys Acta. 1978 Dec 20;537(2):474–484. doi: 10.1016/0005-2795(78)90532-9. [DOI] [PubMed] [Google Scholar]
  24. Smith K. B. The proteins of the embryonic chick epidermis. I. During the normal development in ovo. Dev Biol. 1973 Feb;30(2):249–262. doi: 10.1016/0012-1606(73)90087-0. [DOI] [PubMed] [Google Scholar]
  25. Steinert P., Yuspa S. H. Biochemical evidence for keratinization by mouse epidermal cells in culture. Science. 1978 Jun 30;200(4349):1491–1493. doi: 10.1126/science.566466. [DOI] [PubMed] [Google Scholar]
  26. Sun T. T., Green H. Cultured epithelial cells of cornea, conjunctiva and skin: absence of marked intrinsic divergence of their differentiated states. Nature. 1977 Oct 6;269(5628):489–493. doi: 10.1038/269489a0. [DOI] [PubMed] [Google Scholar]
  27. Sun T. T., Green H. Differentiation of the epidermal keratinocyte in cell culture: formation of the cornified envelope. Cell. 1976 Dec;9(4 Pt 1):511–521. doi: 10.1016/0092-8674(76)90033-7. [DOI] [PubMed] [Google Scholar]
  28. Sun T. T., Green H. Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation. J Biol Chem. 1978 Mar 25;253(6):2053–2060. [PubMed] [Google Scholar]
  29. Viac J., Staquet M. J., Thivolet J., Goujon C. Experimental production of antibodies against stratum corneum keratin polypeptides. Arch Dermatol Res. 1980;267(2):179–188. doi: 10.1007/BF00569104. [DOI] [PubMed] [Google Scholar]
  30. Wu Y. J., Rheinwald J. G. A new small (40 kd) keratin filament protein made by some cultured human squamous cell carcinomas. Cell. 1981 Sep;25(3):627–635. doi: 10.1016/0092-8674(81)90170-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES