Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jun 1;93(3):568–575. doi: 10.1083/jcb.93.3.568

Evidence that all newly synthesized proteins destined for fast axonal transport pass through the Golgi apparatus

PMCID: PMC2112133  PMID: 6181072

Abstract

Effects of the sodium ionophore, monensin, were examined on the passage from neuronal cell body to axon of materials undergoing fast intracellular transport. In vitro exposure of bullfrog dorsal root ganglia to concentrations of drug less than 1.0 micron led to a dose- dependent depression in the amount of fast-transported [3H]leucine- or [3H]glycerol-labeled material appearing in the nerve trunk. Incorporation of either precursor was unaffected. Exposure of a desheathed nerve trunk to similar concentrations of monensin, while ganglia were incubated in drug-free medium, had no effect on transport. With [3H]fucose as precursor, fast transport of labeled glycoproteins was depressed to the same extent as with [3H]leucine; synthesis, again, was unaffected. By contrast, with [3H]galactose as precursor, an apparent reduction in transport of labeled glycoproteins was accounted for by a marked depression in incorporation. The inference from these findings, that monensin acts to block fast transport at the level of the Golgi apparatus, was supported by ultrastructural examination of the drug-treated neurons. An extensive and selective disruption of Golgi saccules was observed, accompanied by an accumulation of clumped smooth membranous cisternae. Quantitative analyses of 48 individual fast-transported protein species, after separation by two-dimensional gel electrophoresis, revealed that monensin depresses all proteins to a similar extent. These results indicate that passage through the Golgi apparatus is an obligatory step in the intracellular routing of materials destined for fast axonal transport.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Haga T., Kurokawa M. Rapid transport of phosphatidylcholine occurring simultaneously with protein transport in the frog sciatic nerve. Biochem J. 1973 Nov;136(3):731–740. doi: 10.1042/bj1360731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bretz R., Bretz H., Palade G. E. Distribution of terminal glycosyltransferases in hepatic Golgi fractions. J Cell Biol. 1980 Jan;84(1):87–101. doi: 10.1083/jcb.84.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cimarusti D. L., Saito K., Vaughn J. E., Barber R., Roberts E., Thomas P. E. Immunocytochemical localization of dopamine-beta-hydroxylase in rat locus coeruleus and hypothalamus. Brain Res. 1979 Feb 16;162(1):55–67. doi: 10.1016/0006-8993(79)90755-8. [DOI] [PubMed] [Google Scholar]
  4. Dravid A. R., Hammerschlag R. Axoplasmic transport of proteins in vitro in primary afferent neurons of frog spinal cord: effect of Ca2+-free incubation conditions. J Neurochem. 1975 Apr;24(4):711–718. [PubMed] [Google Scholar]
  5. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  6. Grafstein B., Forman D. S. Intracellular transport in neurons. Physiol Rev. 1980 Oct;60(4):1167–1283. doi: 10.1152/physrev.1980.60.4.1167. [DOI] [PubMed] [Google Scholar]
  7. Grafstein B., Miller J. A., Ledeen R. W., Haley J., Specht S. C. Axonal transport of phospholipid in goldfish optic system. Exp Neurol. 1975 Feb;46(2):261–281. doi: 10.1016/0014-4886(75)90134-x. [DOI] [PubMed] [Google Scholar]
  8. Hammerschlag R., Lavoie P. A. Initiation of fast axonal transport: involvement of calcium during transfer of proteins from Golgi apparatus to the transport system. Neuroscience. 1979;4(8):1195–1201. doi: 10.1016/0306-4522(79)90202-1. [DOI] [PubMed] [Google Scholar]
  9. Hammerschlag R. The role of calcium in the initiation of fast axonal transport. Fed Proc. 1980 Aug;39(10):2809–2814. [PubMed] [Google Scholar]
  10. Kaiya H., Kreutzberg G. W., Namba M. Ultrastructure of acetylcholinesterase synthesizing neurons in the neostriatum. Brain Res. 1980 Apr 14;187(2):369–382. doi: 10.1016/0006-8993(80)90209-7. [DOI] [PubMed] [Google Scholar]
  11. Käriäinen L., Hashimoto K., Saraste J., Virtanen I., Penttinen K. Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins. J Cell Biol. 1980 Dec;87(3 Pt 1):783–791. doi: 10.1083/jcb.87.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lavoie P. A., Bolen F., Hammerschlag R. Divalent cation specificity of the calcium requirement for fast transport of proteins in axons of desheathed nerves. J Neurochem. 1979 Jun;32(6):1745–1751. doi: 10.1111/j.1471-4159.1979.tb02287.x. [DOI] [PubMed] [Google Scholar]
  13. Lindsey J. D., Hammerschlag R., Ellisman M. H. An increase in smooth endoplasmic reticulum and a decrease in Golgi apparatus occur with ionic conditions that block initiation of fast axonal transport. Brain Res. 1981 Feb 2;205(2):275–287. doi: 10.1016/0006-8993(81)90339-5. [DOI] [PubMed] [Google Scholar]
  14. Longo F. M., Hammerschlag R. Relation of somal lipid synthesis to the fast axonal transport of protein and lipid. Brain Res. 1980 Jul 14;193(2):471–485. doi: 10.1016/0006-8993(80)90178-x. [DOI] [PubMed] [Google Scholar]
  15. Morré D. J., Ovtracht L. Dynamics of the Golgi apparatus: membrane differentiation and membrane flow. Int Rev Cytol Suppl. 1977;(5):61–188. [PubMed] [Google Scholar]
  16. Pickel V. M., Joh T. H., Reis D. J. Monoamine-synthesizing enzymes in central dopaminergic, noradrenergic and serotonergic neurons. Immunocytochemical localization by light and electron microscopy. J Histochem Cytochem. 1976 Jul;24(7):792–306. doi: 10.1177/24.7.8567. [DOI] [PubMed] [Google Scholar]
  17. Rotundo R. L., Fambrough D. M. Secretion of acetylcholinesterase: relation to acetylcholine receptor metabolism. Cell. 1980 Nov;22(2 Pt 2):595–602. doi: 10.1016/0092-8674(80)90369-4. [DOI] [PubMed] [Google Scholar]
  18. Schachter H. Glycosylation of glycoproteins during intracellular transport of secretory products. Adv Cytopharmacol. 1974;2:207–218. [PubMed] [Google Scholar]
  19. Smilowitz H. Monovalent ionophores inhibit acetylcholinesterase release from cultured chick embryo skeletal muscle cells. Mol Pharmacol. 1979 Jul;16(1):202–214. [PubMed] [Google Scholar]
  20. Stone G. C., Hammerschlag R. Differential effects of cobalt on the initiation of fast axonal transport. Cell Mol Neurobiol. 1981 Mar;1(1):3–17. doi: 10.1007/BF00736036. [DOI] [PubMed] [Google Scholar]
  21. Stone G. C., Wilson D. L., Hall M. E. Two-dimensional gel electrophoresis of proteins in rapid axoplasmic transport. Brain Res. 1978 Apr 14;144(2):287–302. doi: 10.1016/0006-8993(78)90155-5. [DOI] [PubMed] [Google Scholar]
  22. Tartakoff A. M. The Golgi complex: crossroads for vesicular traffic. Int Rev Exp Pathol. 1980;22:227–251. [PubMed] [Google Scholar]
  23. Tartakoff A. M., Vassalli P. Plasma cell immunoglobulin secretion: arrest is accompanied by alterations of the golgi complex. J Exp Med. 1977 Nov 1;146(5):1332–1345. doi: 10.1084/jem.146.5.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tartakoff A., Vassalli P., Détraz M. Comparative studies of intracellular transport of secretory proteins. J Cell Biol. 1978 Dec;79(3):694–707. doi: 10.1083/jcb.79.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tartakoff A., Vassalli P. Plasma cell immunoglobulin M molecules. Their biosynthesis, assembly, and intracellular transport. J Cell Biol. 1979 Nov;83(2 Pt 1):284–299. doi: 10.1083/jcb.83.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Uchida N., Smilowitz H., Tanzer M. L. Monovalent ionophores inhibit secretion of procollagen and fibronectin from cultured human fibroblasts. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1868–1872. doi: 10.1073/pnas.76.4.1868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wilson D. L., Hall M. E., Stone G. C., Rubin R. W. Some improvements in two-dimensional gel electrophoresis of proteins. Protein mapping of eukaryotic tissue extracts. Anal Biochem. 1977 Nov;83(1):33–44. doi: 10.1016/0003-2697(77)90506-1. [DOI] [PubMed] [Google Scholar]
  28. Wilson D. L., Stone G. C. Axoplasmic transport of proteins. Annu Rev Biophys Bioeng. 1979;8:27–45. doi: 10.1146/annurev.bb.08.060179.000331. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES