Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jun 1;93(3):804–811. doi: 10.1083/jcb.93.3.804

Stress fibers in cells in situ: immunofluorescence visualization with antiactin, antimyosin, and anti-alpha-actinin

PMCID: PMC2112135  PMID: 6749863

Abstract

Stress fiber-like patterns are visualized by indirect immunofluorescence in scleroblasts (fibroblasts) in situ on the scale of the common goldfish, Carassius auratus, using an affinity-purified antiactin, antimyosin, and anti-alpha-actinin. These fibers demonstrate the classical convergent and parallel patterns exhibited by stress fibers in tissue culture cells. Because the dimensions, the composition, and the pattern of distribution of these cytoplasmic fibers correspond well with those of stress fibers in cultured cells, we will call these fibers stress fibers also. The staining patterns with anti-alpha-actinin and antimyosin along the stress fibers often reveal a periodicity of 1-2 microM, identical to that found in cells in vitro. The majority of scleroblasts do not exhibit stress fiber staining and they are specifically located in the central regions of the scale. Stress fibers are present in scleroblasts residing on or near the edges or radical ridges of the scale. They are consistently orientated perpendicular to these structures; however, unlike microtubules, stress fibers show no co-alignment with collagen fibers of the scale. The finding that stress fibers are located in regions of the scale more subject to shearing forces may indicate their role in increased cellular adhesion to the substratum.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bragina E. E., Vasiliev J. M., Gelfand I. M. Formation of bundles of microfilaments during spreading of fibroblasts on the substrate. Exp Cell Res. 1976 Feb;97(2):241–248. doi: 10.1016/0014-4827(76)90613-3. [DOI] [PubMed] [Google Scholar]
  2. Bretscher A., Weber K. Localization of actin and microfilament-associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. J Cell Biol. 1978 Dec;79(3):839–845. doi: 10.1083/jcb.79.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buckley I. K., Porter K. R. Cytoplasmic fibrils in living cultured cells. A light and electron microscope study. Protoplasma. 1967;64(4):349–380. doi: 10.1007/BF01666538. [DOI] [PubMed] [Google Scholar]
  4. Burnside B. Thin (actin) and thick (myosinlike) filaments in cone contraction in the teleost retina. J Cell Biol. 1978 Jul;78(1):227–246. doi: 10.1083/jcb.78.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byers H. R., Fujiwara K., Porter K. R. Visualization of microtubules of cells in situ by indirect immunofluorescence. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6657–6661. doi: 10.1073/pnas.77.11.6657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cuatrecasas P. Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. J Biol Chem. 1970 Jun;245(12):3059–3065. [PubMed] [Google Scholar]
  7. De Bruyn P. P., Cho Y. Contractile structures in endothelial cells of splenic sinusoids. J Ultrastruct Res. 1974 Oct;49(1):24–33. doi: 10.1016/s0022-5320(74)90075-6. [DOI] [PubMed] [Google Scholar]
  8. Feramisco J. R. Microinjection of fluorescently labeled alpha-actinin into living fibroblasts. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3967–3971. doi: 10.1073/pnas.76.8.3967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujiwara K., Pollard T. D. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol. 1976 Dec;71(3):848–875. doi: 10.1083/jcb.71.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujiwara K., Porter M. E., Pollard T. D. Alpha-actinin localization in the cleavage furrow during cytokinesis. J Cell Biol. 1978 Oct;79(1):268–275. doi: 10.1083/jcb.79.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gabbiani G., Ryan G. B., Lamelin J. P., Vassalli P., Majno G., Bouvier C. A., Cruchaud A., Lüscher E. F. Human smooth muscle autoantibody. Its identification as antiactin antibody and a study of its binding to "nonmuscular" cells. Am J Pathol. 1973 Sep;72(3):473–488. [PMC free article] [PubMed] [Google Scholar]
  12. Goldman R. D., Chang C., Williams J. F. Properties and behavior of hamster embryo cells transformed by human adenovirus type 5. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 1):601–614. doi: 10.1101/sqb.1974.039.01.074. [DOI] [PubMed] [Google Scholar]
  13. Goldman R. D. The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine. J Cell Biol. 1971 Dec;51(3):752–762. doi: 10.1083/jcb.51.3.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gotlieb A. I., Heggeness M. H., Ash J. F., Singer S. J. Mechanochemical proteins, cell motility and cell-cell contacts: the localization of mechanochemical proteins inside cultured cells at the edge of an in vitro "wound". J Cell Physiol. 1979 Sep;100(3):563–578. doi: 10.1002/jcp.1041000318. [DOI] [PubMed] [Google Scholar]
  15. Herman I. M., Pollard T. D. Comparison of purified anti-actin and fluorescent-heavy meromyosin staining patterns in dividing cells. J Cell Biol. 1979 Mar;80(3):509–520. doi: 10.1083/jcb.80.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hynes R. O., Destree A. T. Relationships between fibronectin (LETS protein) and actin. Cell. 1978 Nov;15(3):875–886. doi: 10.1016/0092-8674(78)90272-6. [DOI] [PubMed] [Google Scholar]
  17. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  18. Junqueira L. C., Toledo A. M., Porter K. R. Observations on the structure of the skin of the teleost Fundulus heteroclitus (L). Arch Histol Jpn. 1970 Jun;32(1):1–15. doi: 10.1679/aohc1950.32.1. [DOI] [PubMed] [Google Scholar]
  19. Kreis T. E., Winterhalter K. H., Birchmeier W. In vivo distribution and turnover of fluorescently labeled actin microinjected into human fibroblasts. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3814–3818. doi: 10.1073/pnas.76.8.3814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kurki P. Determination of anti-actin antibodies by a solid-phase immunoenzymatic assay and by indirect immunofluorescence technique. Clin Immunol Immunopathol. 1978 Nov;11(3):328–338. doi: 10.1016/0090-1229(78)90057-0. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lazarides E., Burridge K. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell. 1975 Nov;6(3):289–298. doi: 10.1016/0092-8674(75)90180-4. [DOI] [PubMed] [Google Scholar]
  23. Lazarides E. Tropomyosin antibody: the specific localization of tropomyosin in nonmuscle cells. J Cell Biol. 1975 Jun;65(3):549–561. doi: 10.1083/jcb.65.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Onozato H., Watabe N. Studies on fish scale formation and resorption. III. Fine structure and calcification of the fibrillary plates of the scales in Carassius auratus (Cypriniformes: Cyprinidae). Cell Tissue Res. 1979 Oct;201(3):409–422. doi: 10.1007/BF00236999. [DOI] [PubMed] [Google Scholar]
  27. Overton J. Microtubules and microfibrils in morphogenesis of the scale cells of Ephestia kühniella. J Cell Biol. 1966 May;29(2):293–305. doi: 10.1083/jcb.29.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Owen M. J., Auger J., Barber B. H., Edwards A. J., Walsh F. S., Crumpton M. J. Actin may be present on the lymphocyte surface. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4484–4488. doi: 10.1073/pnas.75.9.4484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rohrlich S. T., Porter K. R. Fine structural observations relating to the production of color by the iridophores of a lizard. Anolis carolinensis. J Cell Biol. 1972 Apr;53(1):38–52. doi: 10.1083/jcb.53.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Spooner B. S., Yamada K. M., Wessells N. K. Microfilaments and cell locomotion. J Cell Biol. 1971 Jun;49(3):595–613. doi: 10.1083/jcb.49.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  32. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Trenchev P., Holborow E. J. The specificity of anti-actin serum. Immunology. 1976 Oct;31(4):509–517. [PMC free article] [PubMed] [Google Scholar]
  34. Wehland J., Osborn M., Weber K. Cell-to-substratum contacts in living cells: a direct correlation between interference-reflexion and indirect-immunofluorescence microscopy using antibodies against actin and alpha-actinin. J Cell Sci. 1979 Jun;37:257–273. doi: 10.1242/jcs.37.1.257. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES