Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Jun;170(6):2858–2859. doi: 10.1128/jb.170.6.2858-2859.1988

Absence of Transient Elevated UV Resistance during Germination of Bacillus subtilis Spores Lacking Small, Acid-Soluble Spore Proteins α and β

Barbara Setlow 1, Peter Setlow 1,*
PMCID: PMC211214  PMID: 3131314

Abstract

Germinating spores of Bacillus subtilis mutants which lack small, acid-soluble spore proteins α and β did not exhibit the transient elevated UV resistance seen during germination of wild-type spores.

Full text

PDF
2858

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Donnellan J. E., Jr, Setlow R. B. Thymine Photoproducts but not Thymine Dimers Found in Ultraviolet-Irradiated Bacterial Spores. Science. 1965 Jul 16;149(3681):308–310. doi: 10.1126/science.149.3681.308. [DOI] [PubMed] [Google Scholar]
  2. Irie R., Okamoto T., Fujita Y. Estimation of photoproduct formation in germinating spores of Bacillus subtilis. Photochem Photobiol. 1982 Jun;35(6):783–787. doi: 10.1111/j.1751-1097.1982.tb02647.x. [DOI] [PubMed] [Google Scholar]
  3. Mason J. M., Setlow P. Different small, acid-soluble proteins of the alpha/beta type have interchangeable roles in the heat and UV radiation resistance of Bacillus subtilis spores. J Bacteriol. 1987 Aug;169(8):3633–3637. doi: 10.1128/jb.169.8.3633-3637.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Mason J. M., Setlow P. Essential role of small, acid-soluble spore proteins in resistance of Bacillus subtilis spores to UV light. J Bacteriol. 1986 Jul;167(1):174–178. doi: 10.1128/jb.167.1.174-178.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Munakata N., Rupert C. S. Genetically controlled removal of "spore photoproduct" from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores. J Bacteriol. 1972 Jul;111(1):192–198. doi: 10.1128/jb.111.1.192-198.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Setlow B., Setlow P. Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins. Proc Natl Acad Sci U S A. 1987 Jan;84(2):421–423. doi: 10.1073/pnas.84.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Stafford R. S., Donnellan J. E., Jr Photochemical evidence for conformation changes in DNA during germination of bacterial spores. Proc Natl Acad Sci U S A. 1968 Mar;59(3):822–828. doi: 10.1073/pnas.59.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Van Wang T. C., Rupert C. S. Evidence for the monomerization of spore photoproduct to two thymines by the light-independent "spore repair" process in Bacillus subtilis. Photochem Photobiol. 1977 Jan;25(1):123–127. doi: 10.1111/j.1751-1097.1977.tb07432.x. [DOI] [PubMed] [Google Scholar]
  9. Varghese A. J. 5-Thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light. Biochem Biophys Res Commun. 1970 Feb 6;38(3):484–490. doi: 10.1016/0006-291x(70)90739-4. [DOI] [PubMed] [Google Scholar]
  10. Wang T. C., Rupert C. S. Transitory germinative excision repair in Bacillus subtilis. J Bacteriol. 1977 Mar;129(3):1313–1319. doi: 10.1128/jb.129.3.1313-1319.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Weinberger S., Evenchik Z., Hertman I. Transitory UV resistance during germination of UV-sensitive spores produced by a mutant of Bacillus cereus 569. Photochem Photobiol. 1984 Jun;39(6):775–780. doi: 10.1111/j.1751-1097.1984.tb08858.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES