Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jun 1;93(3):680–684. doi: 10.1083/jcb.93.3.680

Calcium transport of Plasmodium chabaudi-infected erythrocytes

PMCID: PMC2112141  PMID: 6288729

Abstract

The calcium content and transport processes of Plasmodium chabaudi- infected rat erythrocytes were analyzed by atomic absorption spectroscopy and 45Ca2+ flux measurements. Infected erythrocytes, after fractionation on metrizamide gradients according to stage of parasite development, exhibited progressively increasing levels of Ca2+ with schizont and gametocytes containing 10- to 20-fold greater calcium levels than normal cells (0.54 +/- 0.25 nmol/10(8) cells). 45Ca2+ flux experiments showed both increased influx and decreased efflux in infected erythrocytes. Tris/NH4Cl lysis of normal erythrocytes preloaded with 45Ca2+ with the Ca2+ ionophore A23187 released less than 90% of cell calcium after incubation in ethyleneglycol bis(aminoethylether) N,N'-tetraacetic acid containing buffer, whereas lysis of the infected erythrocyte membrane resulted in release of 10- 20% cell Ca2+, with the remaining portion associated with the isolated parasite fraction. This information together with the effects of various metabolic inhibitors indicates the presence of a parasite Ca2+ compartment in P. chabaudi-infected erythrocytes. Dicyclohexylcarbodiimide (DCCD) an inhibitor of proton ATPases of chloroplasts, bacteria, yeast, and mitochondria, and the proton ionophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), inhibited Ca2+ influx and stimulated efflux from infected cells. These results combined with evidence for a DCCD- and CCCP-sensitive membrane potential in P. chabaudi-infected cells (Mikkelsen et al., accompanying manuscript) suggest that Ca2+ transport of intraerythrocytic parasites is coupled to a proton-motive force across the Plasmodia plasma membrane.

Full Text

The Full Text of this article is available as a PDF (500.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. R., Davis J. L., Carraway K. L. Calcium-promoted changes of the human erythrocyte membrane. Involvement of spectrin, transglutaminase, and a membrane-bound protease. J Biol Chem. 1977 Oct 10;252(19):6617–6623. [PubMed] [Google Scholar]
  2. Bygrave F. L. Mitochondria and the control of intracellular calcium. Biol Rev Camb Philos Soc. 1978 Feb;53(1):43–79. doi: 10.1111/j.1469-185x.1978.tb00992.x. [DOI] [PubMed] [Google Scholar]
  3. Dufour J. P., Boutry M., Goffeau A. Plasma membrane ATPase of yeast. Comparative inhibition studies of the purified and membrane-bound enzymes. J Biol Chem. 1980 Jun 25;255(12):5735–5741. [PubMed] [Google Scholar]
  4. Dunn M. J. Alterations of red blood cell sodium transport during malarial infection. J Clin Invest. 1969 Apr;48(4):674–684. doi: 10.1172/JCI106025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eugui E. M., Allison A. C. Separation of erythrocytes infected with murine malaria parasites in metrizamide gradients. Parasitology. 1979 Oct;79(2):267–275. doi: 10.1017/s0031182000053348. [DOI] [PubMed] [Google Scholar]
  6. Kozlov I. A., Skulachev V. P. H+-Adenosine triphosphatase and membrane energy coupling. Biochim Biophys Acta. 1977 Jun 21;463(1):29–89. doi: 10.1016/0304-4173(77)90003-9. [DOI] [PubMed] [Google Scholar]
  7. Martin W. J., Finerty J., Rosenthal A. Isolation of Plasmodium berghei (malaria) parasites by ammonium chloride lysis of infected erythrocytes. Nat New Biol. 1971 Oct 27;233(43):260–261. doi: 10.1038/newbio233260a0. [DOI] [PubMed] [Google Scholar]
  8. Mikkelsen R. B., Koch B. Thermosensitivity of the membrane potential of normal and simian virus 40-transformed hamster lymphocytes. Cancer Res. 1981 Jan;41(1):209–215. [PubMed] [Google Scholar]
  9. Richards W. H., Williams S. G. The removal of leucocytes from malaria infected blood. Ann Trop Med Parasitol. 1973 Jun;67(2):249–250. doi: 10.1080/00034983.1973.11686885. [DOI] [PubMed] [Google Scholar]
  10. Sarkadi B., Szász I., Gerlóczy A., Gárdos G. Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells. Biochim Biophys Acta. 1977 Jan 4;464(1):93–107. doi: 10.1016/0005-2736(77)90373-x. [DOI] [PubMed] [Google Scholar]
  11. Sarkadi B., Szász I., Gárdos G. The use of ionophores of rapid loading of human red cells with radioactive cations for cation-pump studies. J Membr Biol. 1976 May;26(4):357–370. doi: 10.1007/BF01868883. [DOI] [PubMed] [Google Scholar]
  12. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  13. Sherman I. W. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev. 1979 Dec;43(4):453–495. doi: 10.1128/mr.43.4.453-495.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shoshan V., Selman B. R. The interaction of N,N'-dicyclohexylcarbodiimide with chloroplast coupling factor 1. J Biol Chem. 1980 Jan 25;255(2):384–389. [PubMed] [Google Scholar]
  15. Stroobant P., Dame J. B., Scarborough G. A. The Neurospora plasma membrane Ca2+ pump. Fed Proc. 1980 May 15;39(7):2437–2441. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES