Abstract
The membrane potential (Em) of normal and Plasmodium chabaudi-infected rat erythrocytes was determined from the transmembrane distributions of the lipophilic anion, thiocyanate (SCN), and cation, triphenylmethylphosphonium (TPMP). The SCN- and TPMP-measured Em of normal erythrocytes are -6.5 +/- 3 mV and -10 +/- 4 mV, respectively. The TPMP-measured Em of infected cells depended on parasite developmental stage; "late" stages (schizonts and gametocytes) were characterized by a Em = -35 mV "early stages (ring and copurifying noninfected) by a low Em (-16 mV). The SCN-determined Em of infected cells was -7 mV regardless of parasite stage. Studies with different metabolic inhibitors including antimycin A, a proton ionophore (carbonylcyanide m-chlorophenylhydrazone [CCCP] ), and a H+ -ATPase inhibitor (N,N'-dicyclohexylcarbodiimide, [DCCD] ) indicate that SCN monitors the Em across the erythrocyte membrane of infected and normal cells whereas TPMP accumulation reflects the Em across the plasma membranes of both erythrocyte and parasite. These inhibitor studies also implicated proton fluxes in Em-generation of parasitized cells. Experiments with weak acids and bases to measure intracellular pH further support this proposal. Methylamine distribution and direct pH measurement after saponin lysis of erythrocyte membranes demonstrated an acidic pH for the erythrocyte matrix of infected cells. The transmembrane distributions of weak acids (acetate and 5,5- dimethyloxazolidine-2,4-dione) indicated a DCCD-sensitive alkaline compartment. The combined results suggest that the intraerythrocyte parasite Em and delta pH are in part the consequence of an electrogenic proton pump localized to the parasite plasma membrane.
Full Text
The Full Text of this article is available as a PDF (497.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowman B. J., Mainzer S. E., Allen K. E., Slayman C. W. Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases of Neurospora crassa. Biochim Biophys Acta. 1978 Sep 11;512(1):13–28. doi: 10.1016/0005-2736(78)90214-6. [DOI] [PubMed] [Google Scholar]
- Cameron I. L., Pool T. B., Smith N. K. An X-ray microanalysis survey of the concentration of elements in the cytoplasm of different mammalian cell types. J Cell Physiol. 1979 Dec;101(3):493–501. doi: 10.1002/jcp.1041010315. [DOI] [PubMed] [Google Scholar]
- Cheng K., Haspel H. C., Vallano M. L., Osotimehin B., Sonenberg M. Measurement of membrane potentials (psi) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation. J Membr Biol. 1980 Oct 31;56(3):191–201. doi: 10.1007/BF01869476. [DOI] [PubMed] [Google Scholar]
- Deutsch C. J., Holian A., Holian S. K., Daniele R. P., Wilson D. F. Transmembrane electrical and pH gradients across human erythrocytes and human peripheral lymphocytes. J Cell Physiol. 1979 Apr;99(1):79–93. doi: 10.1002/jcp.1040990110. [DOI] [PubMed] [Google Scholar]
- Friedman M. J., Roth E. F., Nagel R. L., Trager W. Plasmodium falciparum: physiological interactions with the human sickle cell. Exp Parasitol. 1979 Feb;47(1):73–80. doi: 10.1016/0014-4894(79)90009-2. [DOI] [PubMed] [Google Scholar]
- Heinz E., Geck P., Pietrzyk C. Driving forces of amino acid transport in animal cells. Ann N Y Acad Sci. 1975 Dec 30;264:428–441. doi: 10.1111/j.1749-6632.1975.tb31501.x. [DOI] [PubMed] [Google Scholar]
- Hinke J. A., Menard M. R. Evaluation of the DMO method for measuring intracellular pH. Respir Physiol. 1978 Apr;33(1):31–40. doi: 10.1016/0034-5687(78)90081-6. [DOI] [PubMed] [Google Scholar]
- Hoek J. B., Nicholls D. G., Williamson J. R. Determination of the mitochondrial protonmotive force in isolated hepatocytes. J Biol Chem. 1980 Feb 25;255(4):1458–1464. [PubMed] [Google Scholar]
- Kagawa Y., Ohta S., Yoshida M., Sone N. Functions of subunits of H+-ATPase. Ann N Y Acad Sci. 1980;358:103–117. doi: 10.1111/j.1749-6632.1980.tb15390.x. [DOI] [PubMed] [Google Scholar]
- Mikkelsen R. B., Koch B. Thermosensitivity of the membrane potential of normal and simian virus 40-transformed hamster lymphocytes. Cancer Res. 1981 Jan;41(1):209–215. [PubMed] [Google Scholar]
- Mikkelsen R. B., Schmidt-Ullrich R., Wallach D. F. Concanavalin A induces an intraluminal alkalinization of thymocyte membrane vesicles. J Cell Physiol. 1980 Feb;102(2):113–117. doi: 10.1002/jcp.1041020203. [DOI] [PubMed] [Google Scholar]
- Schuldiner S., Kaback H. R. Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry. 1975 Dec 16;14(25):5451–5461. doi: 10.1021/bi00696a011. [DOI] [PubMed] [Google Scholar]
- Sherman I. W. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev. 1979 Dec;43(4):453–495. doi: 10.1128/mr.43.4.453-495.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slayman C. L., Slayman C. W. Depolarization of the plasma membrane of Neurospora during active transport of glucose: evidence for a proton-dependent cotransport system. Proc Natl Acad Sci U S A. 1974 May;71(5):1935–1939. doi: 10.1073/pnas.71.5.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stroobant P., Dame J. B., Scarborough G. A. The Neurospora plasma membrane Ca2+ pump. Fed Proc. 1980 May 15;39(7):2437–2441. [PubMed] [Google Scholar]
- Tanabe K., Mikkelsen R. B., Wallach D. F. Calcium transport of Plasmodium chabaudi-infected erythrocytes. J Cell Biol. 1982 Jun;93(3):680–684. doi: 10.1083/jcb.93.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]