Abstract
Phosphorylation of thylakoid membrane proteins in the chloroplast of wild-type and mutant strains of Chlamydomonas reinhardi has been studied in vivo and in vitro. Intact cells or purified membranes were labeled with [32P]orthophosphate or [gamma-32P]ATP, respectively, and the presence of phosphorylated polypeptides was detected by autoradiography after membrane fractionation by SDS PAGE. The 32P was esterified to serine and threonine residues. At least six polypeptides were phosphorylated in vitro and in vivo, and corresponded to components of the photosystem II complex contributing to the formation of the light-harvesting-chlorophyll (LHC) a,b-protein complex, the DCMU binding site (32-35 kdaltons), and the reaction center (26 kdaltons). In agreement with previous reports (Alfonzo, et al., 1979, Plant Physiol., 65:730-734; and Bennett, 1979, FEBS (Fed. Eur. Biochem. Soc.) Lett., 103:342-344), the membrane-bound protein kinase was markedly stimulated by light in vitro via a mechanism requiring photosystem II activity. Phosphorylation of thylakoid membrane polypeptides in vivo was, however, completely independent of illumination. Similar amounts of phosphate were incorporated into the photosynthetic membranes of cells incubated in the dark, in white light with or without 3-(3,4- dichlorophenyl-1,1-dimethyl urea (DCMU), or in red or far-red light. Different turnovers of the phosphate were observed in the light and dark, and a phosphoprotein phosphatase involved in this turnover process was also associated with the membrane. Comparison of the amount of esterified phosphate per protein in vivo and the maximum incorporation in isolated membranes revealed that only a small fraction of the available sites could be phosphorylated in vitro. In contrast to the DCMU binding site, the LHC and 26-kdalton polypeptide were not phosphorylated in vivo when the reaction center II polypeptides of 44- 54 kdaltons were missing. The finding that all the phosphoproteins appear to be components of the photosystem II complex and are only partially dephosphorylated in vivo suggests strongly that protein phosphorylation might play an important role in the maintenance of the organizational integrity of this complex. The observation that the LHC is not phosphorylated in the absence of the reaction center lends support to this idea.
Full Text
The Full Text of this article is available as a PDF (917.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alfonzo R., Nelson N., Racker E. A Light-dependent Protein Kinase Activity of Chloroplasts. Plant Physiol. 1980 Apr;65(4):730–734. doi: 10.1104/pp.65.4.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersson B., Anderson J. M. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta. 1980 Dec 3;593(2):427–440. doi: 10.1016/0005-2728(80)90078-x. [DOI] [PubMed] [Google Scholar]
- Armond P. A., Staehelin L. A., Arntzen C. J. Spatial relationship of photosystem I, photosystem II, and the light-harvesting complex in chloroplast membranes. J Cell Biol. 1977 May;73(2):400–418. doi: 10.1083/jcb.73.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avruch J., Leone G. R., Martin D. B. Identification and subcellular distribution of adipocyte peptides and phosphopeptides. J Biol Chem. 1976 Mar 10;251(5):1505–1510. [PubMed] [Google Scholar]
- Bar-Nun S., Ohad I. Presence of Polypeptides of Cytoplasmic and Chloroplastic Origin in Isolated Photoactive Preparations of Photosystems I and II in Chlamydomonas reinhardi y-1. Plant Physiol. 1977 Feb;59(2):161–166. doi: 10.1104/pp.59.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bar-Nun S., Schantz R., Ohad I. Appearance and composition of chlorophyll-protein complexes I and II during chloroplast membrane biogenesis in Chlamydomonas reinhardi y-1. Biochim Biophys Acta. 1977 Mar 11;459(3):451–467. doi: 10.1016/0005-2728(77)90045-7. [DOI] [PubMed] [Google Scholar]
- Barnett C. A., Schmidt T. J., Litwack G. Effects of calf intestinal alkaline phosphatase, phosphatase inhibitors, and phosphorylated compounds on the rate of activation of glucocorticoid-receptor complexes. Biochemistry. 1980 Nov 11;19(23):5446–5455. doi: 10.1021/bi00564a046. [DOI] [PubMed] [Google Scholar]
- Bennett J. Chloroplast phosphoproteins. Evidence for a thylakoid-bound phosphoprotein phosphatase. Eur J Biochem. 1980 Feb;104(1):85–89. doi: 10.1111/j.1432-1033.1980.tb04403.x. [DOI] [PubMed] [Google Scholar]
- Bennett J. Chloroplast phosphoproteins. Phosphorylation of polypeptides of the light-harvesting chlorophyll protein complex. Eur J Biochem. 1979 Aug 15;99(1):133–137. doi: 10.1111/j.1432-1033.1979.tb13239.x. [DOI] [PubMed] [Google Scholar]
- Bennett J. Chloroplast phosphoproteins. The protein kinase of thylakoid membranes is light-dependent. FEBS Lett. 1979 Jul 15;103(2):342–344. doi: 10.1016/0014-5793(79)81358-7. [DOI] [PubMed] [Google Scholar]
- Bennett J., Steinback K. E., Arntzen C. J. Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5253–5257. doi: 10.1073/pnas.77.9.5253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonaventura C., Myers J. Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta. 1969;189(3):366–383. doi: 10.1016/0005-2728(69)90168-6. [DOI] [PubMed] [Google Scholar]
- Breton J., Geacintov N. E. Picosecond fluorescence kinetics and fast energy transfer processes in photosynthetic membranes. Biochim Biophys Acta. 1980 Dec 22;594(1):1–32. doi: 10.1016/0304-4173(80)90011-7. [DOI] [PubMed] [Google Scholar]
- Bylund D. B., Huang T. S. Decomposition of phosphoserine and phosphothreonine during acid hydrolysis. Anal Biochem. 1976 Jun;73(2):477–485. doi: 10.1016/0003-2697(76)90197-4. [DOI] [PubMed] [Google Scholar]
- Béliveau R., Bellemare G. Light-dependent phosphorylation of thylakoid membrane polypeptides. Biochem Biophys Res Commun. 1979 Jun 13;88(3):797–803. doi: 10.1016/0006-291x(79)91478-5. [DOI] [PubMed] [Google Scholar]
- Cahen D., Malkin S. Development of Photosystem II Complex during Greening of Chlamydomonas reinhardi y-1. Plant Physiol. 1976 Sep;58(3):257–267. doi: 10.1104/pp.58.3.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chua N. H., Bennoun P. Thylakoid membrane polypeptides of Chlamydomonas reinhardtii: wild-type and mutant strains deficient in photosystem II reaction center. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2175–2179. doi: 10.1073/pnas.72.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chua N. H., Blomberg F. Immunochemical studies of thylakoid membrane polypeptides from spinach and Chlamydomonas reinhardtii. A modified procedure for crossed immunoelectrophoresis of dodecyl sulfate.protein complexes. J Biol Chem. 1979 Jan 10;254(1):215–223. [PubMed] [Google Scholar]
- DUYSENS L. N., AMESZ J., KAMP B. M. Two photochemical systems in photosynthesis. Nature. 1961 May 6;190:510–511. doi: 10.1038/190510a0. [DOI] [PubMed] [Google Scholar]
- De Petrocellis B., Siekevitz P., Palade G. E. Changes in chemical composition of thylakoid membranes during greening of the y-1 mutant of Chlamydomonas reinhardi. J Cell Biol. 1970 Mar;44(3):618–634. doi: 10.1083/jcb.44.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diner B. A., Wollman F. A. Isolation of highly active photosystem II particles from a mutant of Chlamydomonas reinhardtii. Eur J Biochem. 1980 Sep;110(2):521–526. doi: 10.1111/j.1432-1033.1980.tb04894.x. [DOI] [PubMed] [Google Scholar]
- Eytan G., Ohad I. Biogenesis of chloroplast membranes. VII. The preservation of membrane homogeneity during development of the photosynthetic lamellar system in an algal mutant chlamydomonas reinhardi g-1). J Biol Chem. 1972 Jan 10;247(1):112–121. [PubMed] [Google Scholar]
- Gerace L., Blobel G. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell. 1980 Jan;19(1):277–287. doi: 10.1016/0092-8674(80)90409-2. [DOI] [PubMed] [Google Scholar]
- Harris H. W., Jr, Levin N., Lux S. E. Comparison of the phosphorylation of human erythrocyte spectrin in the intact red cell and in various cell-free systems. J Biol Chem. 1980 Dec 10;255(23):11521–11525. [PubMed] [Google Scholar]
- Katz A. M. Role of the contractile proteins and sarcoplasmic reticulum in the response of the heart to catecholamines: an historical review. Adv Cyclic Nucleotide Res. 1979;11:303–343. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lam K. S., Kasper C. B. Selective endogenous phosphorylation of two liver microsomal polypeptides in the presence of micromolar levels of Mg2+ ion. J Biol Chem. 1980 Jan 10;255(1):259–266. [PubMed] [Google Scholar]
- Lam K. S., Kasper C. B. Selective phosphorylation of a nuclear envelope polypeptide by an endogenous protein kinase. Biochemistry. 1979 Jan 23;18(2):307–311. doi: 10.1021/bi00569a012. [DOI] [PubMed] [Google Scholar]
- Loyter A., Ben-Zaquen R., Marash R., Milner Y. Dephosphorylation of human erythrocyte membranes induced by sendai virus. Biochemistry. 1977 Aug 23;16(17):3903–3909. doi: 10.1021/bi00636a028. [DOI] [PubMed] [Google Scholar]
- Miller K. R., Ohad I. Chloroplast membrane biogenesis in Chlamydomonas: correlation between the formation of membrane components and membrane structure. Cell Biol Int Rep. 1978 Nov;2(6):537–549. doi: 10.1016/0309-1651(78)90062-0. [DOI] [PubMed] [Google Scholar]
- Mills J. D., Crowther D., Slovacek R. E., Hind G., McCarty R. E. Electron transport pathways in spinach chloroplasts. Reduction of the primary acceptor of photosystem II by reduced nicotinamide adenine dinucleotide phosphate in the dark. Biochim Biophys Acta. 1979 Jul 10;547(1):127–137. doi: 10.1016/0005-2728(79)90101-4. [DOI] [PubMed] [Google Scholar]
- Nelson N. Structure and function of chloroplast ATPase. Biochim Biophys Acta. 1976 Nov 30;456(3-4):314–338. doi: 10.1016/0304-4173(76)90003-3. [DOI] [PubMed] [Google Scholar]
- Ohad I., Siekevitz P., Palade G. E. Biogenesis of chloroplast membranes. I. Plastid dedifferentiation in a dark-grown algal mutant (Chlamydomonas reinhardi). J Cell Biol. 1967 Dec;35(3):521–552. doi: 10.1083/jcb.35.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfister K., Steinback K. E., Gardner G., Arntzen C. J. Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc Natl Acad Sci U S A. 1981 Feb;78(2):981–985. doi: 10.1073/pnas.78.2.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rienits K. G., Hardt H., Avron M. Energy-dependent reverse electron flow in chloroplasts. Eur J Biochem. 1974 Apr 1;43(2):291–298. doi: 10.1111/j.1432-1033.1974.tb03412.x. [DOI] [PubMed] [Google Scholar]
- Verdanis A. Protein kinase activity at the inner membrane of mammalian mitochondria. J Biol Chem. 1977 Feb 10;252(3):807–813. [PubMed] [Google Scholar]
- Wollman F. A. Determination and modification of the redox state of the secondary acceptor of photosystem II in the dark. Biochim Biophys Acta. 1978 Aug 8;503(2):263–273. doi: 10.1016/0005-2728(78)90187-1. [DOI] [PubMed] [Google Scholar]
- Wollman F. A., Olive J., Bennoun P., Recouvreur M. Organization of the photosystem II centers and their associated antennae in the thylakoid membranes: a comparative ultrastructural, biochemical, and biophysical study of Chlamydomonas wild type and mutants lacking in photosystem II reaction centers. J Cell Biol. 1980 Dec;87(3 Pt 1):728–735. doi: 10.1083/jcb.87.3.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zahlten R. N., Hochberg A. A., Stratman F. W., Lardy H. A. Glucagon-stimulated phosphorylation of mitochondrial and lysosomal membranes of rat liver in vivo. Proc Natl Acad Sci U S A. 1972 Apr;69(4):800–804. doi: 10.1073/pnas.69.4.800. [DOI] [PMC free article] [PubMed] [Google Scholar]