Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jun 1;93(3):543–550. doi: 10.1083/jcb.93.3.543

Identification of a constituent of the junctional feet linking terminal cisternae to transverse tubules in skeletal muscle

PMCID: PMC2112169  PMID: 6749861

Abstract

This study describes the biochemical composition of junctional feet in skeletal muscle utilizing a fraction of isolated triad junctions. [3H]Ouabain entrapment was employed as a specific marker for T-tubules. The integrity of the triad junction was assayed by the isopycnic density of [3H]ouabain activity (24-30% sucrose for free T-tubules, 38- 42% sucrose for intact triads). Trypsin, chymotrypsin, and pronase all caused separation of T-tubules from terminal cisternae, indicating that the junction is composed as least in part of protein. Trypsin and chymotrypsin hydrolyzed four proteins: the Ca2+ pump, a doublet 325,000, 300,000, and an 80,000 Mr protein. T-tubules which had been labeled covalently with 125I were joined to unlabeled terminal cisternae by treatment with K cacodylate. The reformed triads were separated from free T-tubules and then severed by passage through a French press. When terminal cisternae were separated from T-tubules, some 125I label was transferred from the labeled T-tubules to the unlabeled terminal cisternae. Gel electrophoresis showed that, although T-tubules were originally labeled in a large number of different proteins, only a single protein doublet was significantly labeled in the originally unlabeled terminal cisternae. This protein pair had molecular weights of 325,000 and 300,000 daltons. Transfer of label did not occur to a substantial degree without K cacodylate treatment. We propose that the transfer of 125I label from T-tubules to terminal cisternae during reformation and breakage of the triad junction is a property of the protein which spans the gap between T-tubules and terminal cisternae.

Full Text

The Full Text of this article is available as a PDF (994.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandt N. R., Caswell A. H., Brunschwig J. P. ATP-energized Ca2+ pump in isolated transverse tubules of skeletal muscle. J Biol Chem. 1980 Jul 10;255(13):6290–6298. [PubMed] [Google Scholar]
  2. Campbell K. P., Franzini-Armstrong C., Shamoo A. E. Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the 'sarcoplasmic reticulum feet' associated with heavy sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1980 Oct 16;602(1):97–116. doi: 10.1016/0005-2736(80)90293-x. [DOI] [PubMed] [Google Scholar]
  3. Caswell A. H., Lau Y. H., Brunschwig J. P. Ouabain-binding vesicles from skeletal muscle. Arch Biochem Biophys. 1976 Oct;176(2):417–430. doi: 10.1016/0003-9861(76)90184-3. [DOI] [PubMed] [Google Scholar]
  4. Caswell A. H., Lau Y. H., Garcia M., Brunschwig J. P. Recognition and junction formation by isolated transverse tubules and terminal cisternae of skeletal muscle. J Biol Chem. 1979 Jan 10;254(1):202–208. [PubMed] [Google Scholar]
  5. Chandler W. K., Rakowski R. F., Schneider M. F. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J Physiol. 1976 Jan;254(2):285–316. doi: 10.1113/jphysiol.1976.sp011233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Costantin L. L. Contractile activation in skeletal muscle. Prog Biophys Mol Biol. 1975;29(2):197–224. doi: 10.1016/0079-6107(76)90023-7. [DOI] [PubMed] [Google Scholar]
  7. Eisenberg B. R., Kuda A. M., Peter J. B. Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig. J Cell Biol. 1974 Mar;60(3):732–754. doi: 10.1083/jcb.60.3.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Franzini-Armstrong C. Membrane particles and transmission at the triad. Fed Proc. 1975 Apr;34(5):1382–1389. [PubMed] [Google Scholar]
  9. HUXLEY A. F., TAYLOR R. E. Local activation of striated muscle fibres. J Physiol. 1958 Dec 30;144(3):426–441. doi: 10.1113/jphysiol.1958.sp006111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lau Y. H., Caswell A. H., Brunschwig J. P., Baerwald R. j., Garcia M. Lipid analysis and freeze-fracture studies on isolated transverse tubules and sarcoplasmic reticulum subfractions of skeletal muscle. J Biol Chem. 1979 Jan 25;254(2):540–546. [PubMed] [Google Scholar]
  13. Lau Y. H., Caswell A. H., Brunschwig J. P. Isolation of transverse tubules by fractionation of triad junctions of skeletal muscle. J Biol Chem. 1977 Aug 10;252(15):5565–5574. [PubMed] [Google Scholar]
  14. Saito A., Wang C. T., Fleischer S. Membrane asymmetry and enhanced ultrastructural detail of sarcoplasmic reticulum revealed with use of tannic acid. J Cell Biol. 1978 Dec;79(3):601–616. doi: 10.1083/jcb.79.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Scales D. J. Stereological analysis of freeze-fracture subfractions from skeletal muscle. I. Relative intrinsic protein. II. Relative lipid content and protein-to-lipid ratio. Biophys J. 1981 Mar;33(3):409–418. doi: 10.1016/S0006-3495(81)84903-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Somlyo A. V. Bridging structures spanning the junctioning gap at the triad of skeletal muscle. J Cell Biol. 1979 Mar;80(3):743–750. doi: 10.1083/jcb.80.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES