Abstract
The possibility that proteins are modified during axoplasmic transport in central nervous system axons was examined by analyzing neurofilament proteins (200,000, 140,000, and 70,000 mol wt) along the mouse primary optic pathway (optic nerve and optic tract). The major neurofilament proteins (NFPs) exhibited considerable microheterogeneity. At least three forms of the “ 140,000” neurofilament protein differing in molecular weight by SDS PAGE (140,000-145,000 mol wt) were identified. The “140,000” proteins, and their counterparts in purified neurofilament preparations, displayed similar isoelectric points and the same peptide maps. The “140,000” NFPs exhibited regional heterogeneity when consecutive segments of the optic pathway were separately examined on polyacrylamide gels. Two major species (145,000 and 140,000 mol wt) were present along the entire length of the optic pathway. The third protein (143,000 mol wt) was absent proximally but became increasingly prominent in distal segments. After intravitreal injection of [(3)H]proline, newly synthesized radiolabeled proteins in the “140,000” mol wt region entered proximal mouse retinal ganglion cell (RGC) axons as two major species corresponding to the 145,000 and 14,000 mol wt NFPs observed on stained gels. When transported NFPs reached more distal axonal regions (30 d postinjection or longer), a 143,000 mol wt protein appeared that was similar in isoelectric point and peptide map to the 145,000 and 140,000 mol wt species. The results suggest that (a) the composition of CNS neurofilaments, particularly the “140,000” component, is more complex than previously recognized, that (b) retinal ganglion cell axons display regional differentiation with respect to these cytoskeletal proteins, and that (c) structural heterogeneity of “140,000” NFPs arises, at least in part, from posttranslational modification during axoplasmic transport. When excised but intact optic pathways were incubated in vitro at pH 7.4, a 143,000 NFP was rapidly formed by a calcium-dependent enzymatic process active at endogenous calcium levels. Changes in major proteins other than those in the 145,000-140,000 mol wt region were minimal. In optic pathways from mice injected intravitreally with L-[(3)H]proline, tritiated 143,000 mol wt NFP formed rapidly in vitro if radioactively labeled NFPs were present in distal RGC axonal regions (31 d postinjection). By contrast, no 143,000 mol wt NFP was generated if radioactively labeled NFPs were present proximally in RGC axons (6 d postinjection). The enzymatic process that generates 143,000 mol wt NFP in vitro, therefore, appears to have a nonuniform distribution along the RGC axons. The foregoing results and other observations, including the accompanying report (J. Cell Biol., 1982, 94:159-164), imply that CNS axons may be regionally specialized with respect to structure and function.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderton B. H., Ayers M., Thorpe R. Neurofilaments from mammalian central and peripheral nerve share certain polypeptides. FEBS Lett. 1978 Dec 1;96(1):159–163. doi: 10.1016/0014-5793(78)81083-7. [DOI] [PubMed] [Google Scholar]
- Berry R. W., Schwartz A. W. Axonal transport and axonal processing of low molecular weight proteins from the abdominal ganglion of Aplysia. Brain Res. 1977 Jun 24;129(1):75–90. doi: 10.1016/0006-8993(77)90971-4. [DOI] [PubMed] [Google Scholar]
- Black M. M., Lasek R. J. Slow components of axonal transport: two cytoskeletal networks. J Cell Biol. 1980 Aug;86(2):616–623. doi: 10.1083/jcb.86.2.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bordier C., Crettol-Järvinen A. Peptide mapping of heterogeneous protein samples. J Biol Chem. 1979 Apr 25;254(8):2565–2567. [PubMed] [Google Scholar]
- Brown B. A., Nixon R. A., Marotta C. A. Posttranslational processing of alpha-tubulin during axoplasmic transport in CNS axons. J Cell Biol. 1982 Jul;94(1):159–164. doi: 10.1083/jcb.94.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown B. A., Nixon R. A., Strocchi P., Marotta C. A. Characterization and comparison of neurofilament proteins from rat and mouse CNS. J Neurochem. 1981 Jan;36(1):143–153. doi: 10.1111/j.1471-4159.1981.tb02389.x. [DOI] [PubMed] [Google Scholar]
- Chiu F. C., Korey B., Norton W. T. Intermediate filaments from bovine, rat, and human CNS: mapping analysis of the major proteins. J Neurochem. 1980 May;34(5):1149–1159. doi: 10.1111/j.1471-4159.1980.tb09954.x. [DOI] [PubMed] [Google Scholar]
- Czosnek H., Soifer D. Comparison of the proteins of 10 nm filaments from rabbit sciatic nerve and spinal cord by electrophoresis in two dimensions. FEBS Lett. 1980 Aug 11;117(1):175–178. doi: 10.1016/0014-5793(80)80939-2. [DOI] [PubMed] [Google Scholar]
- Czosnek H., Soifer D., Wisniewski H. M. Heterogeneity of intermediate filament proteins from rabbit spinal cord. Neurochem Res. 1980 Jul;5(7):777–793. doi: 10.1007/BF00964715. [DOI] [PubMed] [Google Scholar]
- DeVries G. H., Norton W. T., Raine C. S. Axons: isolation from mammalian central nervous system. Science. 1972 Mar 24;175(4028):1370–1372. doi: 10.1126/science.175.4028.1370. [DOI] [PubMed] [Google Scholar]
- Ellisman M. H. Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination. J Neurocytol. 1979 Dec;8(6):719–735. doi: 10.1007/BF01206672. [DOI] [PubMed] [Google Scholar]
- Friede R. L., Samorajski T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec. 1970 Aug;167(4):379–387. doi: 10.1002/ar.1091670402. [DOI] [PubMed] [Google Scholar]
- Gainer H., Sarne Y., Brownstein M. J. Neurophysin biosynthesis: conversion of a putative precursor during axonal transport. Science. 1977 Mar 25;195(4284):1354–1356. doi: 10.1126/science.65791. [DOI] [PubMed] [Google Scholar]
- Gilbert D. S., Newby B. J. Neurofilament disguise, destruction and discipline. Nature. 1975 Aug 14;256(5518):586–589. doi: 10.1038/256586a0. [DOI] [PubMed] [Google Scholar]
- Gray E. G., Guillery R. W. Synaptic morphology in the normal and degenerating nervous system. Int Rev Cytol. 1966;19:111–182. doi: 10.1016/s0074-7696(08)60566-5. [DOI] [PubMed] [Google Scholar]
- Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huneeus F. C., Davison P. F. Fibrillar proteins from squid axons. I. Neurofilament protein. J Mol Biol. 1970 Sep 28;52(3):415–428. doi: 10.1016/0022-2836(70)90410-9. [DOI] [PubMed] [Google Scholar]
- Lasek R. J., Krishnan N., Kaiserman-Abramof I. R. Identification of the subunit proteins of 10-nm neurofilaments isolated from axoplasm of squid and Myxicola giant axons. J Cell Biol. 1979 Aug;82(2):336–346. doi: 10.1083/jcb.82.2.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine J., Willard M. The composition and organization of axonally transported proteins in the retinal ganglion cells of the guinea pig. Brain Res. 1980 Jul 21;194(1):137–154. doi: 10.1016/0006-8993(80)91324-4. [DOI] [PubMed] [Google Scholar]
- Liem R. K., Yen S. H., Salomon G. D., Shelanski M. L. Intermediate filaments in nervous tissues. J Cell Biol. 1978 Dec;79(3):637–645. doi: 10.1083/jcb.79.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marotta C. A., Harris J. L., Gilbert J. M. Characterization of multiple forms of brain tubulin subunits. J Neurochem. 1978 Jun;30(6):1431–1440. doi: 10.1111/j.1471-4159.1978.tb10475.x. [DOI] [PubMed] [Google Scholar]
- Marotta C. A., Strocchi P., Gilbert J. M. Biosynthesis of heterogeneous forms of mammalian brain tubulin subunits by multiple messenger RNAs. J Neurochem. 1979 Jul;33(1):231–246. doi: 10.1111/j.1471-4159.1979.tb11725.x. [DOI] [PubMed] [Google Scholar]
- Marotta C. A., Strocchi P., Gilbert J. M. Microheterogeneity of brain cytoplasmic and synaptoplasmic actins. J Neurochem. 1978 Jun;30(6):1441–1451. doi: 10.1111/j.1471-4159.1978.tb10476.x. [DOI] [PubMed] [Google Scholar]
- Metuzals J. Configuration of a filamentous network in the axoplasm of the squid (Loligo pealii L.) giant nerve fiber. J Cell Biol. 1969 Dec;43(3):480–505. doi: 10.1083/jcb.43.3.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nixon R. A. Increased axonal proteolysis in myelin-deficient mutant mice. Science. 1982 Feb 19;215(4535):999–1001. doi: 10.1126/science.7156980. [DOI] [PubMed] [Google Scholar]
- Nixon R. A. Protein degradation in the mouse visual system. I. Degradation of axonally transported and retinal proteins. Brain Res. 1980 Oct 27;200(1):69–83. doi: 10.1016/0006-8993(80)91095-1. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Pant H. C., Shecket G., Gainer H., Lasek R. J. Neurofilament protein is phosphorylated in the squid giant axon. J Cell Biol. 1978 Aug;78(2):R23–R27. doi: 10.1083/jcb.78.2.r23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pant H. C., Terakawa S., Gainer H. A calcium activated protease in squid axoplasm. J Neurochem. 1979 Jan;32(1):99–102. doi: 10.1111/j.1471-4159.1979.tb04515.x. [DOI] [PubMed] [Google Scholar]
- Peters A., Proskauer C. C., Kaiserman-Abramof I. R. The small pyramidal neuron of the rat cerebral cortex. The axon hillock and initial segment. J Cell Biol. 1968 Dec;39(3):604–619. doi: 10.1083/jcb.39.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters A., Vaughn J. E. Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves. J Cell Biol. 1967 Jan;32(1):113–119. doi: 10.1083/jcb.32.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlaepfer W. W., Freeman L. A. Neurofilament proteins of rat peripheral nerve and spinal cord. J Cell Biol. 1978 Sep;78(3):653–662. doi: 10.1083/jcb.78.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlaepfer W. W., Hasler M. B. Characterization of the calcium-induced disruption of neurofilaments in rat peripheral nerve. Brain Res. 1979 May 25;168(2):299–309. doi: 10.1016/0006-8993(79)90171-9. [DOI] [PubMed] [Google Scholar]
- Schlaepfer W. W. Structural alterations of peripheral nerve induced by the calcium ionophore A23187. Brain Res. 1977 Nov 4;136(1):1–9. doi: 10.1016/0006-8993(77)90126-3. [DOI] [PubMed] [Google Scholar]
- Shelanski M. L., Liem R. K. Neurofilaments. J Neurochem. 1979 Jul;33(1):5–13. doi: 10.1111/j.1471-4159.1979.tb11699.x. [DOI] [PubMed] [Google Scholar]
- Stavinoha W. B., Weintraub S. T., Modak A. T. The use of microwave heating to inactivate cholinesterase in the rat brain prior to analysis for acetylcholine. J Neurochem. 1973 Feb;20(2):361–371. doi: 10.1111/j.1471-4159.1973.tb12135.x. [DOI] [PubMed] [Google Scholar]
- Tytell M., Black M. M., Garner J. A., Lasek R. J. Axonal transport: each major rate component reflects the movement of distinct macromolecular complexes. Science. 1981 Oct 9;214(4517):179–181. doi: 10.1126/science.6169148. [DOI] [PubMed] [Google Scholar]
- Waxman S. G., Foster R. E. Development of the axon membrane during differentiation of myelinated fibres in spinal nerve roots. Proc R Soc Lond B Biol Sci. 1980 Sep 26;209(1176):441–446. doi: 10.1098/rspb.1980.0105. [DOI] [PubMed] [Google Scholar]
- Waxman S. G., Foster R. E. Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers. Brain Res. 1980 Oct;203(2):205–234. doi: 10.1016/0165-0173(80)90008-9. [DOI] [PubMed] [Google Scholar]
- Waxman S. G. Regional differentiation of the axon: a review with special reference to the concept of the multiplex neuron. Brain Res. 1972 Dec 12;47(2):269–288. doi: 10.1016/0006-8993(72)90639-7. [DOI] [PubMed] [Google Scholar]
- Willard M. B., Hulebak K. L. The intra-axonal transport of polypeptide H: evidence for a fifth (very slow) group of transported proteins in the retinal ganglion cells of the rabbit. Brain Res. 1977 Nov 11;136(2):289–306. doi: 10.1016/0006-8993(77)90804-6. [DOI] [PubMed] [Google Scholar]
- Willard M., Cowan W. M., Vagelos P. R. The polypeptide composition of intra-axonally transported proteins: evidence for four transport velocities. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2183–2187. doi: 10.1073/pnas.71.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willard M., Simon C. Antibody decoration of neurofilaments. J Cell Biol. 1981 May;89(2):198–205. doi: 10.1083/jcb.89.2.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wuerker R. B., Kirkpatrick J. B. Neuronal microtubules, neurofilaments, and microfilaments. Int Rev Cytol. 1972;33:45–75. doi: 10.1016/s0074-7696(08)61448-5. [DOI] [PubMed] [Google Scholar]