Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jul 1;94(1):70–76. doi: 10.1083/jcb.94.1.70

Establishment of gonadotropin-responsive murine leydig tumor cell line

PMCID: PMC2112190  PMID: 6288740

Abstract

Several clonal Leydig tumor cell lines have been established by adapting the transplantable Leydig tumor, M548OP, to culture. One of these cell line, MLTC-1, has been characterized with regard to the gonadotropin-responsive adenylate cyclase system. The binding of 125I- labeled human chorionic gonadotropin (hCG) was blocked by excess unlabeled hCG and lutropin (LH) but not by follitropin, thyrotropin, or insulin, indicating the presence of specific receptors for hCG and LH. Based on the specific binding of hCG to isolated MLTC-1 membranes, the calculated dissociation constant was 1.0 +/- 0.2 X 10(-10) M. The receptors appeared identical to those from normal murine Leydig cells when analyzed by SDS PAGE and sucrose density gradient centrifugation. The molecular weight and sedimentation coefficient were 95,000 daltons and 8.5 S, respectively. MLTC-1 cells responded to hCG by accumulating cyclic AMP and producing progesterone. Cyclic AMP accumulation was time- and dose-dependent with a maximal accumulation occurring at approximately 0.2 nM hCG. At saturating levels of hCG, cAMP levels reached a maximum by 30 min and then declined very slowly. Adenylate cyclase activity in membranes prepared from MLTC-1 cells was stimulated by hCG, LH, NaF, cholera toxin, and guanyl-5'-ylimidodiphosphate, Additionally, choleragen was found to ADP-ribosylate a membrane protein of 54,000 daltons. This protein resembles the proposed guanine nucleotide regulatory component in both size and choleragen-dependent reactivity. These data suggest that MLTC-1 cells possess a gonadotropin- responsive adenylate cyclase system consisting of a specific hormone receptor, a regulatory component, and a catalytic subunit.

Full Text

The Full Text of this article is available as a PDF (909.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascoli M. Regulation of gonadotropin receptors and gonadotropin responses in a clonal strain of Leydig tumor cells by epidermal growth factor. J Biol Chem. 1981 Jan 10;256(1):179–183. [PubMed] [Google Scholar]
  2. Beckner S. K., Blecher M. Endogenous and cholera toxin-catalyzed ADP-ribosylation of a plasma membrane protein by RL-PR-C cloned rat hepatocytes. Biochim Biophys Acta. 1981 Apr 3;673(4):477–486. doi: 10.1016/0304-4165(81)90479-7. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cassel D., Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2669–2673. doi: 10.1073/pnas.75.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooke B. A., Lindh L. M., Janszen F. H., van Driel M. J., Bakker C. P., van der Plank M. P., van der Molen H. J. A Leydig cell tumour: a model for the study of lutropin action. Biochim Biophys Acta. 1979 Mar 22;583(3):320–331. doi: 10.1016/0304-4165(79)90456-2. [DOI] [PubMed] [Google Scholar]
  7. Downs R. W., Jr, Reen S. A., Levine M. A., Aurbach G. D., Spiegel A. M. Cholera-toxin-dependent ADP-ribosylation of the adenylate cyclase regulatory protein in turkey erythrocyte membranes. Arch Biochem Biophys. 1981 Jun;209(1):284–290. doi: 10.1016/0003-9861(81)90282-4. [DOI] [PubMed] [Google Scholar]
  8. Dufau M. L., Baukal A. J., Catt K. J. Hormone-induced guanyl nucleotide binding and activation of adenylate cyclase in the Leydig cell. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5837–5841. doi: 10.1073/pnas.77.10.5837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dufau M. L., Charreau E. H., Catt K. J. Characteristics of a soluble gonadotropin receptor from the rat testis. J Biol Chem. 1973 Oct 25;248(20):6973–6982. [PubMed] [Google Scholar]
  10. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  11. Fishman P. H., Mallorga P., Tallman J. F. Catecholamine-induced desensitization of adenylate cyclase in rat glioma C6 cells. Evidence for a specific uncoupling of beta-adrenergic receptors from a functional regulatory component of adenylate cyclase. Mol Pharmacol. 1981 Sep;20(2):310–318. [PubMed] [Google Scholar]
  12. Gill D. M., Meren R. ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3050–3054. doi: 10.1073/pnas.75.7.3050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ji I., Ji T. H. Both alpha and beta subunits of human choriogonadotropin photoaffinity label the hormone receptor. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5465–5469. doi: 10.1073/pnas.78.9.5465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ji I., Ji T. H. Macromolecular photoaffinity labeling of the lutropin receptor on granulosa cells. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7167–7170. doi: 10.1073/pnas.77.12.7167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ji I., Yoo B. Y., Kaltenbach C., Ji T. H. Structure of the lutropin receptor on granulosa cells. Photoaffinity labeling with the alpha subunit in human choriogonadotropin. J Biol Chem. 1981 Nov 10;256(21):10853–10858. [PubMed] [Google Scholar]
  16. Johnson G. L., Kaslow H. R., Bourne H. R. Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase. J Biol Chem. 1978 Oct 25;253(20):7120–7123. [PubMed] [Google Scholar]
  17. Kaslow H. R., Cox D., Groppi V. E., Bourne H. R. An Mr = 52,000 peptide can mediate effects on cholera toxin on adenylate cyclase in intact cells. Mol Pharmacol. 1981 May;19(3):406–410. [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. MOORHEAD P. S., NOWELL P. C., MELLMAN W. J., BATTIPS D. M., HUNGERFORD D. A. Chromosome preparations of leukocytes cultured from human peripheral blood. Exp Cell Res. 1960 Sep;20:613–616. doi: 10.1016/0014-4827(60)90138-5. [DOI] [PubMed] [Google Scholar]
  20. Mendelson C., Dufau M., Catt K. Gonadotropin binding and stimulation of cyclic adenosine 3':5'-monophosphate and testosterone production in isolated Leydig cells. J Biol Chem. 1975 Nov 25;250(22):8818–8823. [PubMed] [Google Scholar]
  21. Northup J. K., Sternweis P. C., Smigel M. D., Schleifer L. S., Ross E. M., Gilman A. G. Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6516–6520. doi: 10.1073/pnas.77.11.6516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pacuszka T., Osborne J. C., Jr, Brady R. O., Fishman P. H. Interaction of human chorionic gonadotropin with membrane components of rat testes. Proc Natl Acad Sci U S A. 1978 Feb;75(2):764–768. doi: 10.1073/pnas.75.2.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pierce J. G., Parsons T. F. Glycoprotein hormones: structure and function. Annu Rev Biochem. 1981;50:465–495. doi: 10.1146/annurev.bi.50.070181.002341. [DOI] [PubMed] [Google Scholar]
  24. Pittman R. N., Molinoff P. B. Interactions of agonists and antagonists with beta-adrenergic receptors on intact L6 muscle cells. J Cyclic Nucleotide Res. 1980;6(6):421–435. [PubMed] [Google Scholar]
  25. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature. 1980 Mar 6;284(5751):17–22. doi: 10.1038/284017a0. [DOI] [PubMed] [Google Scholar]
  26. Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
  27. Salomon Y. Adenylate cyclase assay. Adv Cyclic Nucleotide Res. 1979;10:35–55. [PubMed] [Google Scholar]
  28. Smith C. C., Tallman J. F., Post R. M., van Kammen D. P., Jimerson D. C., Brown G. L. An examination of baseline and drug-induced levels of cyclic nucleotides in the cerebrospinal fluid of control and psychiatric patients. Life Sci. 1976 Jul 1;19(1):131–136. doi: 10.1016/0024-3205(76)90383-0. [DOI] [PubMed] [Google Scholar]
  29. Terasaki W. L., Brooker G. [125I]Iodohydroxybenzylpindolol binding sites on intact rat glioma cells. Evidence for beta-adrenergic receptors of high coupling efficiency. J Biol Chem. 1978 Aug 10;253(15):5418–5425. [PubMed] [Google Scholar]
  30. Wiley H. S., Cunningham D. D. A steady state model for analyzing the cellular binding, internalization and degradation of polypeptide ligands. Cell. 1981 Aug;25(2):433–440. doi: 10.1016/0092-8674(81)90061-1. [DOI] [PubMed] [Google Scholar]
  31. Wolff J., Cook G. H. Choleragen stimulates steroidogenesis and adenylate cyclase in cells lacking functional hormone receptors. Biochim Biophys Acta. 1975 Dec 1;413(2):283–290. doi: 10.1016/0005-2736(75)90113-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES