Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Jul 1;94(1):88–96. doi: 10.1083/jcb.94.1.88

Partial purification of presynaptic plasma membrane by immunoadsorption

PMCID: PMC2112194  PMID: 6749869

Abstract

During transmitter release, synaptic vesicle membrane is specifically inserted into the nerve terminal plasma membrane only at specialized sites or "active zones." In an attempt to obtain a membrane fraction enriched in active zones, we have utilized the electric organ of the marine ray. From this organ, a fraction enriched in nerve terminals (synaptosomes) was prepared by conventional means. These synaptosomes were bound to microscopic beads by an antiserum to purified electric organ synaptic vesicles (anti-SV). The success of this immunoadsorption procedure was demonstrated by increased specific activities of bead- bound nerve terminal cytoplasmic markers and decreased specific activities of markers for contaminating membranes. To obtain a presynaptic plasma membrane (PSPM) fraction, we lysed the bead-bound synaptosomes by hypoosmotic shock and sonication, resulting in complete release of cytoplasmic markers. When the synaptosomal fraction was surface-labeled with iodine before immunoadsorption, 10% of this label remained bead-bound after lysis, compared with 2% of the total protein, indicating an approximately fivefold enrichment of bead-bound plasma membrane. Concomitantly, the specific activity of bead-bound anti-SV increased approximately 30-fold, indicating an enrichment of plasma membrane which contained inserted synaptic vesicle components. This PSPM preparation is not simply synaptic vesicle membrane since two- dimensional electrophoresis revealed that the polypeptides of the surface-iodinated PSPM preparation include both vesicle and numerous nonvesicle components. Secondly, antiserum to the PSPM fraction is markedly different from anti-SV and binds to external, nonvesicle, nerve terminal components.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlson S. S., Kelly R. B. An antiserum specific for cholinergic synaptic vesicles from electric organ. J Cell Biol. 1980 Oct;87(1):98–103. doi: 10.1083/jcb.87.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carlson S. S., Wagner J. A., Kelly R. B. Purification of synaptic vesicles from elasmobranch electric organ and the use of biophysical criteria to demonstrate purity. Biochemistry. 1978 Apr 4;17(7):1188–1199. doi: 10.1021/bi00600a009. [DOI] [PubMed] [Google Scholar]
  3. Cohen C. M., Kalish D. I., Jacobson B. S., Branton D. Membrane isolation on polylysine-coated beads. Plasma membrane from HeLa cells. J Cell Biol. 1977 Oct;75(1):119–134. doi: 10.1083/jcb.75.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Couteaux R., Pécot-Dechavassine M. Les zones spécialisées des membranes présynaptiques. C R Acad Sci Hebd Seances Acad Sci D. 1974 Jan 7;278(2):291–293. [PubMed] [Google Scholar]
  5. Duguid J. R., Raftery M. A. Fractionation and partial characterization of membrane particles from Torpedo californica electroplax. Biochemistry. 1973 Sep 11;12(19):3593–3597. doi: 10.1021/bi00743a003. [DOI] [PubMed] [Google Scholar]
  6. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  7. Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975 Feb;24(2):407–409. doi: 10.1111/j.1471-4159.1975.tb11895.x. [DOI] [PubMed] [Google Scholar]
  8. Gentry M. K., Olsson R. A. A simple, specific, radioisotopic assay for 5'-nucleotidase. Anal Biochem. 1975 Apr;64(2):624–627. doi: 10.1016/0003-2697(75)90478-9. [DOI] [PubMed] [Google Scholar]
  9. Hooper J. E., Carlson S. S., Kelly R. B. Antibodies to synaptic vesicles purified from Narcine electric organ bind a subclass of mammalian nerve terminals. J Cell Biol. 1980 Oct;87(1):104–113. doi: 10.1083/jcb.87.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Israël M., Manaranche R., Mastour-Frachon P., Morel N. Isolation of pure cholinergic nerve endings from the electric organ of Torpedo marmorata. Biochem J. 1976 Oct 15;160(1):113–115. doi: 10.1042/bj1600113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ito A., Palade G. E. Presence of NADPH-cytochrome P-450 reductase in rat liver Golgi membranes. Evidence obtained by immunoadsorption method. J Cell Biol. 1978 Nov;79(2 Pt 1):590–597. doi: 10.1083/jcb.79.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klinman N. R., Pickard A. R., Sigal N. H., Gearhart P. J., Metcalf E. S., Pierce S. K. Assessing B cell diversification by antigen receptor and precursor cell analysis. Ann Immunol (Paris) 1976 Jun-Jul;127(3-4):489–502. [PubMed] [Google Scholar]
  13. Kloog Y., Michaelson D. M., Sokolovsky M. Identification of muscarinic receptors in the Torpedo electric organ. Evidence for their presynaptic localization. FEBS Lett. 1978 Nov 15;95(2):331–334. doi: 10.1016/0014-5793(78)81023-0. [DOI] [PubMed] [Google Scholar]
  14. Medzihradsky F., Nandhasri P. S., Idoyaga-Vargas V., Sellinger O. Z. A comparison of ATPase activity of the glial cell fraction and the neuronal perikaryal fraction isolated in bulk from rat cerebbral cortex. J Neurochem. 1971 Aug;18(8):1599–1603. doi: 10.1111/j.1471-4159.1971.tb00023.x. [DOI] [PubMed] [Google Scholar]
  15. Michaelson D. M., Sokolovsky M. Induced acetylcholine release from active purely cholinergic Torpedo synaptosomes. J Neurochem. 1978 Jan;30(1):217–230. doi: 10.1111/j.1471-4159.1978.tb07055.x. [DOI] [PubMed] [Google Scholar]
  16. Miljanich G. P., Brasier A. R., Kelly R. B. Partial purification of active zones of presynaptic plasma membrane by immunoadsorption. Biophys J. 1982 Jan;37(1):137–138. doi: 10.1016/S0006-3495(82)84640-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sanes J. R., Carlson S. S., Von Wedel R. J., Kelly R. B. Antiserum specific for motor nerve terminals in skeletal muscle. Nature. 1979 Aug 2;280(5721):403–404. doi: 10.1038/280403a0. [DOI] [PubMed] [Google Scholar]
  18. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  19. Schmidt J., Raftery M. A. A simple assay for the study of solubilized acetylcholine receptors. Anal Biochem. 1973 Apr;52(2):349–354. doi: 10.1016/0003-2697(73)90036-5. [DOI] [PubMed] [Google Scholar]
  20. Smith A. P., Loh H. H. Architecture of the nerve ending membrane. Life Sci. 1979 Jan 1;24(1):1–20. doi: 10.1016/0024-3205(79)90582-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stadler H., Tashiro T. Isolation of synaptosomal plasma membranes from cholinergic nerve terminals and a comparison of their proteins with those of synaptic vesicles. Eur J Biochem. 1979 Nov 1;101(1):171–178. doi: 10.1111/j.1432-1033.1979.tb04229.x. [DOI] [PubMed] [Google Scholar]
  22. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  23. Vacquier V. D. The isolation of intact cortical granules from sea urchin eggs: calcium lons trigger granule discharge. Dev Biol. 1975 Mar;43(1):62–74. doi: 10.1016/0012-1606(75)90131-1. [DOI] [PubMed] [Google Scholar]
  24. Viratelle O. M., Bernhard S. A. Major component of acetylcholinesterase in Torpedo electroplax is not basal lamina associated. Biochemistry. 1980 Oct 28;19(22):4999–5007. doi: 10.1021/bi00563a011. [DOI] [PubMed] [Google Scholar]
  25. von Wedel R. J., Carlson S. S., Kelly R. B. Transfer of synaptic vesicle antigens to the presynaptic plasma membrane during exocytosis. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1014–1018. doi: 10.1073/pnas.78.2.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES