Abstract
Antibody against cytoplasmic myosin, when microinjected into actively dividing cells, provides a physiological test for the role of actin and myosin in chromosome movement. Anti-Asterias egg myosin, characterized by Mabuchi and Okuno (1977, J. Cell Biol., 74:251), completely and specifically inhibits the actin activated Mg++ -ATPase of myosin in vitro and, when microinjected, inhibits cytokinesis in vivo. Here, we demonstrate that microinjected antibody has no observable effect on the rate or extent of anaphase chromosome movements. Neither central spindle elongation nor chromosomal fiber shortening is affected by doses up to eightfold higher than those require to uniformly inhibit cytokinesis in all injected cells. We calculate that such doses are sufficient to completely inhibit myosin ATPase activity in these cells. Cells injected with buffer alone, with myosin-absorbed antibody, or with nonimmune gamma-globulin, proceed normally through both mitosis and cytokinesis. Control gamma-globulin, labeled with fluorescein, diffuses to homogeneity throughout the cytoplasm in 2-4 min and remains uniformly distributed. Antibody is not excluded from the spindle region. Prometaphase chromosome movements, fertilization, pronuclear migration, and pronuclear fusion are also unaffected by microinjected antimyosin. These experiments demonstrate that antimyosin blocks the actomyosin interaction thought to be responsible for force production in cytokinesis but has no effect on mitotic or meiotic chromosome motion. They provide direct physiological evidence that myosin is not involved in force production for chromosome movement.
Full Text
The Full Text of this article is available as a PDF (7.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barak L. S., Nothnagel E. A., DeMarco E. F., Webb W. W. Differential staining of actin in metaphase spindles with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin and fluorescent DNase: is actin involved in chromosomal movement? Proc Natl Acad Sci U S A. 1981 May;78(5):3034–3038. doi: 10.1073/pnas.78.5.3034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryan J. Biochemical properties of microtubules. Fed Proc. 1974 Feb;33(2):152–157. [PubMed] [Google Scholar]
- Cande W. Z. Inhibition of spindle elongation in permeabilized mitotic cells by erythro-9-[3-(2-hydroxynonyl)] adenine. Nature. 1982 Feb 25;295(5851):700–701. doi: 10.1038/295700a0. [DOI] [PubMed] [Google Scholar]
- Cande W. Z., McDonald K., Meeusen R. L. A permeabilized cell model for studying cell division: a comparison of anaphase chromosome movement and cleavage furrow constriction in lysed PtK1 cells. J Cell Biol. 1981 Mar;88(3):618–629. doi: 10.1083/jcb.88.3.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cande W. Z. Nucleotide requirements for anaphase chromosome movements in permeabilized mitotic cells: anaphase B but not anaphase A requires ATP. Cell. 1982 Jan;28(1):15–22. doi: 10.1016/0092-8674(82)90370-1. [DOI] [PubMed] [Google Scholar]
- Cande W. Z., Wolniak S. M. Chromosome movement in lysed mitotic cells is inhibited by vanadate. J Cell Biol. 1978 Nov;79(2 Pt 1):573–580. doi: 10.1083/jcb.79.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiwara K., Pollard T. D. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol. 1976 Dec;71(3):848–875. doi: 10.1083/jcb.71.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiwara K., Pollard T. D. Simultaneous localization of myosin and tubulin in human tissue culture cells by double antibody staining. J Cell Biol. 1978 Apr;77(1):182–195. doi: 10.1083/jcb.77.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuseler J. W. Mitosis in Tilia americana endosperm. J Cell Biol. 1975 Jan;64(1):159–171. doi: 10.1083/jcb.64.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuseler J. W. Repetitive procurement of mature gametes from individual sea stars and sea urchins. J Cell Biol. 1973 Jun;57(3):879–881. doi: 10.1083/jcb.57.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuseler J. W. Temperature dependence of anaphase chromosome velocity and microtubule depolymerization. J Cell Biol. 1975 Dec;67(3):789–800. doi: 10.1083/jcb.67.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HIRAMOTO Y. Microinjection of the live spermatozoa into sea urchin eggs. Exp Cell Res. 1962 Sep;27:416–426. doi: 10.1016/0014-4827(62)90006-x. [DOI] [PubMed] [Google Scholar]
- Hill T. L. Microfilament or microtubule assembly or disassembly against a force. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5613–5617. doi: 10.1073/pnas.78.9.5613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S., Ritter H., Jr Mitosis in Barbulanympha. II. Dynamics of a two-stage anaphase, nuclear morphogenesis, and cytokinesis. J Cell Biol. 1978 Jun;77(3):655–684. doi: 10.1083/jcb.77.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
- Kiehart D. P. Microinjection of echinoderm eggs: apparatus and procedures. Methods Cell Biol. 1982;25(Pt B):13–31. doi: 10.1016/s0091-679x(08)61418-1. [DOI] [PubMed] [Google Scholar]
- Kiehart D. P. Studies on the in vivo sensitivity of spindle microtubules to calcium ions and evidence for a vesicular calcium-sequestering system. J Cell Biol. 1981 Mar;88(3):604–617. doi: 10.1083/jcb.88.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korn E. D. Biochemistry of actomyosin-dependent cell motility (a review). Proc Natl Acad Sci U S A. 1978 Feb;75(2):588–599. doi: 10.1073/pnas.75.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mabuchi I. A myosin-like protein in the cortical layer of cleaving starfish eggs. J Biochem. 1974 Jul;76(1):47–55. doi: 10.1093/oxfordjournals.jbchem.a130558. [DOI] [PubMed] [Google Scholar]
- Mabuchi I. Biochemistry of dynein and its role in cell motility. Horiz Biochem Biophys. 1978;5:1–36. [PubMed] [Google Scholar]
- Mabuchi I. Myosin from starfish egg: properties and interaction with actin. J Mol Biol. 1976 Feb 5;100(4):569–582. doi: 10.1016/s0022-2836(76)80046-0. [DOI] [PubMed] [Google Scholar]
- Mabuchi I., Okuno M. The effect of myosin antibody on the division of starfish blastomeres. J Cell Biol. 1977 Jul;74(1):251–263. doi: 10.1083/jcb.74.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margolis R. L., Wilson L., Keifer B. I. Mitotic mechanism based on intrinsic microtubule behaviour. Nature. 1978 Mar 30;272(5652):450–452. doi: 10.1038/272450a0. [DOI] [PubMed] [Google Scholar]
- Margolis R. L., Wilson L. Microtubule treadmills--possible molecular machinery. Nature. 1981 Oct 29;293(5835):705–711. doi: 10.1038/293705a0. [DOI] [PubMed] [Google Scholar]
- Maruta H., Korn E. D. Acanthamoeba cofactor protein is a heavy chain kinase required for actin activation of the Mg2+-ATPase activity of Acanthamoeba myosin I. J Biol Chem. 1977 Dec 10;252(23):8329–8332. [PubMed] [Google Scholar]
- Maruta H., Korn E. D. Acanthamoeba myosin II. J Biol Chem. 1977 Sep 25;252(18):6501–6509. [PubMed] [Google Scholar]
- Meeusen R. L., Bennett J., Cande W. Z. Effect of microinjected N-ethylmaleimide-modified heavy meromyosin on cell division in amphibian eggs. J Cell Biol. 1980 Sep;86(3):858–865. doi: 10.1083/jcb.86.3.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nunnally M. H., D'Angelo J. M., Craig S. W. Filamin concentration in cleavage furrow and midbody region: frequency of occurrence compared with that of alpha-actinin and myosin. J Cell Biol. 1980 Oct;87(1):219–226. doi: 10.1083/jcb.87.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oppenheim D. S., Hauschka B. T., McIntosh J. R. Anaphase motions in dilute colchicine. Evidence of two phases in chromosome segregation. Exp Eye Res. 1973 Apr;79(1):95–105. [PubMed] [Google Scholar]
- Pollard T. D., Stafford W. F., Porter M. E. Characterization of a second myosin from Acanthamoeba castellanii. J Biol Chem. 1978 Jul 10;253(13):4798–4808. [PubMed] [Google Scholar]
- Pratt M. M., Otter T., Salmon E. D. Dynein-like Mg2+-ATPase in mitotic spindles isolated from sea urchin embryos (Strongylocentrotus droebachiensis). J Cell Biol. 1980 Sep;86(3):738–745. doi: 10.1083/jcb.86.3.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RIS H. The anaphase movement of chromosomes in the spermatocytes of the grasshopper. Biol Bull. 1949 Feb;96(1):90–106. [PubMed] [Google Scholar]
- Ritter H., Jr, Inoué S., Kubai D. Mitosis in Barbulanympha. I. Spindle structure, formation, and kinetochore engagement. J Cell Biol. 1978 Jun;77(3):638–654. doi: 10.1083/jcb.77.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder T. E. Dynamics of the contractile ring. Soc Gen Physiol Ser. 1975;30:305–334. [PubMed] [Google Scholar]
- Wang Y. L., Taylor D. L. Distribution of fluorescently labeled actin in living sea urchin eggs during early development. J Cell Biol. 1979 Jun;81(3):672–679. doi: 10.1083/jcb.81.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]