Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Sep 1;94(3):667–669. doi: 10.1083/jcb.94.3.667

Cytoplasmic structure in rapid-frozen axons

PMCID: PMC2112215  PMID: 6182148

Abstract

Turtle optic nerves were rapid-frozen from the living state, fractured, etched, and rotary shadowed. Stereo views of fractured axons show that axoplasm consists of three types of longitudinally oriented domains. One type consists of neurofilament bundles in which individual filaments are interconnected by a cross-bridging network. Contiguous to neurofilament domains are domains containing microtubules suspended in a loose, granular matrix. A third domain is confined to a zone, 80-100 nm wide, next to the axonal membrane and consists of a dense filamentous network connecting the longitudinal elements of the axonal cytoskeleton to particles on the inner surface of the axolemma. Three classes of membrane-limited organelles are distinguished: axoplasmic reticulum, mitochondria, and discrete vesicular organelles. The vesicular organelles must include lysosomes, multivesicular bodies, and vesicles which are retrogradely transported in axons, though some vesicular organelles may be components of the axoplasmic reticulum. Organelles in each class have a characteristic relationship to the axonal cytoskeleton. The axoplasmic reticulum enters all three domains of axoplasm, but mitochondria and vesicular organelles are excluded from the neurofilament bundles, a distribution confirmed in thin sections of cryoembedded axons. Vesicular organelles differ from mitochondria in at least three ways with respect to their relationships to adjacent axoplasm: (a) one, or sometimes both, of their ends are associated with a gap in the surrounding granular axoplasm; (b) an appendage is typically associated with one of their ends; and (c) they are not attached or closely apposed to microtubules. Mitochondria, on the other hand, are only rarely associated with gaps in the axoplasm, do not have an appendage, and are virtually always attached to one or more microtubules by an irregular array of side-arms. We propose that the longitudinally oriented microtubule domains are channels within which organelles are transported. We also propose that the granular material in these channels may constitute the myriad enzymes and other nonfibrous components that slowly move down the axon.

Full Text

The Full Text of this article is available as a PDF (7.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos L., Klug A. Arrangement of subunits in flagellar microtubules. J Cell Sci. 1974 May;14(3):523–549. doi: 10.1242/jcs.14.3.523. [DOI] [PubMed] [Google Scholar]
  2. Black M. M., Lasek R. J. Axonal transport of actin: slow component b is the principal source of actin for the axon. Brain Res. 1979 Aug 10;171(3):401–413. doi: 10.1016/0006-8993(79)91045-x. [DOI] [PubMed] [Google Scholar]
  3. Brady S. T., Lasek R. J. Nerve-specific enolase and creatine phosphokinase in axonal transport: soluble proteins and the axoplasmic matrix. Cell. 1981 Feb;23(2):515–523. doi: 10.1016/0092-8674(81)90147-1. [DOI] [PubMed] [Google Scholar]
  4. Bray D., Bunge M. B. Serial analysis of microtubules in cultured rat sensory axons. J Neurocytol. 1981 Aug;10(4):589–605. doi: 10.1007/BF01262592. [DOI] [PubMed] [Google Scholar]
  5. Breuer A. C., Christian C. N., Henkart M., Nelson P. G. Computer analysis of organelle translocation in primary neuronal cultures and continuous cell lines. J Cell Biol. 1975 Jun;65(3):562–576. doi: 10.1083/jcb.65.3.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Byers M. R. Structural correlates of rapid axonal transport: evidence that microtubules may not be directly involved. Brain Res. 1974 Jul 19;75(1):97–113. doi: 10.1016/0006-8993(74)90773-2. [DOI] [PubMed] [Google Scholar]
  7. Chan K. Y., Bunt A. H. An association between mitochondria and microtubules in synaptosomes and axon terminals of cerebral cortex. J Neurocytol. 1978 Apr;7(2):137–143. doi: 10.1007/BF01217913. [DOI] [PubMed] [Google Scholar]
  8. Cooper P. D., Smith R. S. The movement of optically detectable organelles in myelinated axons of Xenopus laevis. J Physiol. 1974 Oct;242(1):77–97. doi: 10.1113/jphysiol.1974.sp010695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Edds K. T. Motility in Echinosphaerium nucleofilum. I. An analysis of particle motions in the axopodia and a direct test of the involvement of the axoneme. J Cell Biol. 1975 Jul;66(1):145–155. doi: 10.1083/jcb.66.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ellisman M. H., Porter K. R. Microtrabecular structure of the axoplasmic matrix: visualization of cross-linking structures and their distribution. J Cell Biol. 1980 Nov;87(2 Pt 1):464–479. doi: 10.1083/jcb.87.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Erickson H. P. Microtubule surface lattice and subunit structure and observations on reassembly. J Cell Biol. 1974 Jan;60(1):153–167. doi: 10.1083/jcb.60.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Forman D. S., Padjen A. L., Siggins G. R. Axonal transport of organelles visualized by light microscopy: cinemicrographic and computer analysis. Brain Res. 1977 Nov 11;136(2):197–213. doi: 10.1016/0006-8993(77)90798-3. [DOI] [PubMed] [Google Scholar]
  13. Freed J. J., Lebowitz M. M. The association of a class of saltatory movements with microtubules in cultured cells. J Cell Biol. 1970 May;45(2):334–354. doi: 10.1083/jcb.45.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grafstein B., Forman D. S. Intracellular transport in neurons. Physiol Rev. 1980 Oct;60(4):1167–1283. doi: 10.1152/physrev.1980.60.4.1167. [DOI] [PubMed] [Google Scholar]
  15. Gross G. W. The microstream concept of axoplasmic and dendritic transport. Adv Neurol. 1975;12:283–296. [PubMed] [Google Scholar]
  16. Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heuser J. E., Reese T. S., Landis D. M. Preservation of synaptic structure by rapid freezing. Cold Spring Harb Symp Quant Biol. 1976;40:17–24. doi: 10.1101/sqb.1976.040.01.004. [DOI] [PubMed] [Google Scholar]
  19. Heuser J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol. 1980 Mar;84(3):560–583. doi: 10.1083/jcb.84.3.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hodge A. J., Adelman W. J., Jr The neuroplasmic network in Loligo and Hermissenda neurons. J Ultrastruct Res. 1980 Feb;70(2):220–241. doi: 10.1016/s0022-5320(80)80007-4. [DOI] [PubMed] [Google Scholar]
  21. Kirkpatrick J. B., Bray J. J., Palmer S. M. Visualization of axoplasmic flow in vitro by Nomarski microscopy. Comparison to rapid flow of radioactive proteins. Brain Res. 1972 Aug 11;43(1):1–10. doi: 10.1016/0006-8993(72)90270-3. [DOI] [PubMed] [Google Scholar]
  22. Lasek R. J. Axoplasmic transport of labeled proteins in rat ventral motoneurons. Exp Neurol. 1968 May;21(1):41–51. doi: 10.1016/0014-4886(68)90032-0. [DOI] [PubMed] [Google Scholar]
  23. Lavail J. H., Rapisardi S., Sugino I. K. Evidence against the smooth endoplasmic reticulum as a continuous channel for the retrograde axonal transport of horseradish peroxidase. Brain Res. 1980 Jun 2;191(1):3–20. doi: 10.1016/0006-8993(80)90311-x. [DOI] [PubMed] [Google Scholar]
  24. Martinez A. J., Friede R. L. Accumulation of axoplasmic organelles in swollen nerve fibers. Brain Res. 1970 Apr 14;19(2):183–198. doi: 10.1016/0006-8993(70)90433-6. [DOI] [PubMed] [Google Scholar]
  25. Mori K., Nowycky M. C., Shepherd G. M. Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb. J Physiol. 1981 May;314:281–294. doi: 10.1113/jphysiol.1981.sp013707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murphy D. B., Tilney L. G. The role of microtubules in the movement of pigment granules in teleost melanophores. J Cell Biol. 1974 Jun;61(3):757–779. doi: 10.1083/jcb.61.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagai R., Hayama T. Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming in Chara internodal cells. J Cell Sci. 1979 Apr;36:121–136. doi: 10.1242/jcs.36.1.121. [DOI] [PubMed] [Google Scholar]
  28. Purves D., Lichtman J. W. Formation and maintenance of synaptic connections in autonomic ganglia. Physiol Rev. 1978 Oct;58(4):821–862. doi: 10.1152/physrev.1978.58.4.821. [DOI] [PubMed] [Google Scholar]
  29. Raine C. S., Ghetti B., Shelanski M. L. On the association between microtubules and mitochondria within axons. Brain Res. 1971 Nov;34(2):389–393. doi: 10.1016/0006-8993(71)90293-9. [DOI] [PubMed] [Google Scholar]
  30. Rambourg A., Droz B. Smooth endoplasmic reticulum and axonal transport. J Neurochem. 1980 Jul;35(1):16–25. doi: 10.1111/j.1471-4159.1980.tb12484.x. [DOI] [PubMed] [Google Scholar]
  31. Rebhun L. I. Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Int Rev Cytol. 1972;32:93–137. doi: 10.1016/s0074-7696(08)60339-3. [DOI] [PubMed] [Google Scholar]
  32. Schwab M. E., Javoy-Agid F., Agid Y. Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain Res. 1978 Aug 18;152(1):145–150. doi: 10.1016/0006-8993(78)90140-3. [DOI] [PubMed] [Google Scholar]
  33. Schwab M. E., Suda K., Thoenen H. Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. J Cell Biol. 1979 Sep;82(3):798–810. doi: 10.1083/jcb.82.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schwab M. E., Thoenen H. Selective binding, uptake, and retrograde transport of tetanus toxin by nerve terminals in the rat iris. An electron microscope study using colloidal gold as a tracer. J Cell Biol. 1978 Apr;77(1):1–13. doi: 10.1083/jcb.77.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schwab M. E. Ultrastructural localization of a nerve growth factor-horseradish peroxidase (NGF-HRP) coupling product after retrograde axonal transport in adrenergic neurons. Brain Res. 1977 Jul 8;130(1):190–196. doi: 10.1016/0006-8993(77)90857-5. [DOI] [PubMed] [Google Scholar]
  36. Schwab M., Thoenen H. Selective trans-synaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: a comparison with nerve growth factor. Brain Res. 1977 Feb 25;122(3):459–474. doi: 10.1016/0006-8993(77)90457-7. [DOI] [PubMed] [Google Scholar]
  37. Smith D. S., Järlfors U., Cayer M. L. Structural cross-bridges between microtubules and mitochondria in central axons of an insect (Periplaneta americana). J Cell Sci. 1977;27:255–272. doi: 10.1242/jcs.27.1.255. [DOI] [PubMed] [Google Scholar]
  38. Smith D. S. On the significance of cross-bridges between microtubules and synaptic vesicles. Philos Trans R Soc Lond B Biol Sci. 1971 Jun 17;261(839):395–405. doi: 10.1098/rstb.1971.0074. [DOI] [PubMed] [Google Scholar]
  39. Smith R. S. The short term accumulation of axonally transported organelles in the region of localized lesions of single myelinated axons. J Neurocytol. 1980 Feb;9(1):39–65. doi: 10.1007/BF01205226. [DOI] [PubMed] [Google Scholar]
  40. Tilney L. G., Porter K. R. Studies on microtubules in Heliozoa. I. The fine structure of Actinosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma. 1965;60(4):317–344. doi: 10.1007/BF01247886. [DOI] [PubMed] [Google Scholar]
  41. Tsukita S., Ishikawa H. Three-dimensional distribution of smooth endoplasmic reticulum in myelinated axons. J Electron Microsc (Tokyo) 1976;25(3):141–149. [PubMed] [Google Scholar]
  42. Willard M., Cowan W. M., Vagelos P. R. The polypeptide composition of intra-axonally transported proteins: evidence for four transport velocities. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2183–2187. doi: 10.1073/pnas.71.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Willard M., Simon C. Antibody decoration of neurofilaments. J Cell Biol. 1981 May;89(2):198–205. doi: 10.1083/jcb.89.2.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wolosewick J. J., Porter K. R. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol. 1979 Jul;82(1):114–139. doi: 10.1083/jcb.82.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wolosewick J. J., Porter K. R. Stereo high-voltage electron microscopy of whole cells of the human diploid line, WI-38. Am J Anat. 1976 Nov;147(3):303–323. doi: 10.1002/aja.1001470305. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES