Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Sep 1;94(3):654–661. doi: 10.1083/jcb.94.3.654

Isolation and initial characterization of the mammalian midbody

PMCID: PMC2112229  PMID: 7130277

Abstract

Midbodies were isolated from synchronized cultures of Chinese hamster ovary (CHO) cells and their protein composition was studied by means of SDS PAGE. Gels of the midbodies included alpha and beta tubulins as major bands (approximately 30% of the total protein) and approximately 35 other bands, none of which constituted greater than 3.5% of the total protein. Extraction of the isolated midbodies with Sarkosyl NL-30- solubilized the midbody microtubules but left the central, dense matrix zone of the midbody intact. A protein doublet of approximately 115,000 mol wt was retained preferentially by the particulate fraction containing the matrix zones, indicating it to be a component of the matrix. The 115,000 mol wt doublet was also present in gels of isolated mitotic spindles from CHO cells. The overall protein composition of the isolated spindles was very similar to that of the isolated midbodies.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brinkley B. R., Cartwright J., Jr Ultrastructural analysis of mitotic spindle elongation in mammalian cells in vitro. Direct microtubule counts. J Cell Biol. 1971 Aug;50(2):416–431. doi: 10.1083/jcb.50.2.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bulinski J. C., Rodríguez J. A., Borisy G. G. Test of four possible mechanisms for the temporal control of spindle and cytoplasmic microtubule assembly in HeLa cells. J Biol Chem. 1980 Feb 25;255(4):1684–1688. [PubMed] [Google Scholar]
  3. Chu L. K., Sisken J. E. The isolation and preliminary electrophoretic analysis of the mitotic spindle from cultured mammalian cells. Exp Cell Res. 1977 Jun;107(1):71–77. doi: 10.1016/0014-4827(77)90387-1. [DOI] [PubMed] [Google Scholar]
  4. Connolly J. A., Kalnins V. I., Cleveland D. W., Kirschner M. W. Immunoflourescent staining of cytoplasmic and spindle microtubules in mouse fibroblasts with antibody to tau protein. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2437–2440. doi: 10.1073/pnas.74.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Euteneuer U., McIntosh J. R. Polarity of midbody and phragmoplast microtubules. J Cell Biol. 1980 Nov;87(2 Pt 1):509–515. doi: 10.1083/jcb.87.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Euteneuer U., McIntosh J. R. Structural polarity of kinetochore microtubules in PtK1 cells. J Cell Biol. 1981 May;89(2):338–345. doi: 10.1083/jcb.89.2.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KRISHAN A., BUCK R. C. STRUCTURE OF THE MITOTIC SPINDLE IN L STRAIN FIBROBLASTS. J Cell Biol. 1965 Mar;24:433–444. doi: 10.1083/jcb.24.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krystal G., Rattner J. B., Hamkalo B. A. Partial purification and characterization of the intercellular bridge from cultured mouse cells. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4977–4981. doi: 10.1073/pnas.75.10.4977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Lockwood A. H. Tubulin assembly protein: immunochemical and immunofluorescent studies on its function and distribution in microtubules and cultured cells. Cell. 1978 Apr;13(4):613–627. doi: 10.1016/0092-8674(78)90212-x. [DOI] [PubMed] [Google Scholar]
  11. Mazia D., Petzelt C., Williams R. O., Meza I. A Ca-activated ATPase in the mitotic apparatus of the sea urchin egg (isolated by a new method). Exp Cell Res. 1972 Feb;70(2):325–332. doi: 10.1016/0014-4827(72)90143-7. [DOI] [PubMed] [Google Scholar]
  12. McIntosh J. R., Cande W. Z., Snyder J. A. Structure and physiology of the mammalian mitotic spindle. Soc Gen Physiol Ser. 1975;30:31–76. [PubMed] [Google Scholar]
  13. McIntosh J. R., McDonald K. L., Edwards M. K., Ross B. M. Three-dimensional structure of the central mitotic spindle of Diatoma vulgare. J Cell Biol. 1979 Nov;83(2 Pt 1):428–442. doi: 10.1083/jcb.83.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mullins J. M., Biesele J. J. Cytokinetic activities in a human cell line: the midbody and intercellular bridge. Tissue Cell. 1973;5(1):47–61. doi: 10.1016/s0040-8166(73)80005-9. [DOI] [PubMed] [Google Scholar]
  15. Mullins J. M., Biesele J. J. Terminal phase of cytokinesis in D-98s cells. J Cell Biol. 1977 Jun;73(3):672–684. doi: 10.1083/jcb.73.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murphy D. B. Identification of microtubule-associated proteins in the meiotic spindle of surf clam oocytes. J Cell Biol. 1980 Feb;84(2):235–245. doi: 10.1083/jcb.84.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Paweletz N. Zur Funktion des "Flemming-Körpers" bei der Teilung tierischer Zellen. Naturwissenschaften. 1967 Oct;54(20):533–535. doi: 10.1007/BF00627210. [DOI] [PubMed] [Google Scholar]
  18. Petzelt C. Biochemistry of the mitotic spindle. Int Rev Cytol. 1979;60:53–92. doi: 10.1016/s0074-7696(08)61259-0. [DOI] [PubMed] [Google Scholar]
  19. Pickett-Heaps J. D., Tippit D. H. The diatom spindle in perspective. Cell. 1978 Jul;14(3):455–467. doi: 10.1016/0092-8674(78)90232-5. [DOI] [PubMed] [Google Scholar]
  20. Pratt M. M., Otter T., Salmon E. D. Dynein-like Mg2+-ATPase in mitotic spindles isolated from sea urchin embryos (Strongylocentrotus droebachiensis). J Cell Biol. 1980 Sep;86(3):738–745. doi: 10.1083/jcb.86.3.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sakai H., Shimoda S., Hiramoto Y. Mass isolation of mitotic apparatus using a glycerol/Mg2+/Triton X-100 medium. Exp Cell Res. 1977 Feb;104(2):457–461. doi: 10.1016/0014-4827(77)90117-3. [DOI] [PubMed] [Google Scholar]
  22. Salmon E. D., Goode D., Maugel T. K., Bonar D. B. Pressure-induced depolymerization of spindle microtubules. III. Differential stability in HeLa cells. J Cell Biol. 1976 May;69(2):443–454. doi: 10.1083/jcb.69.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Telzer B. R., Haimo L. T. Decoration of spindle microtubules with Dynein: evidence for uniform polarity. J Cell Biol. 1981 May;89(2):373–378. doi: 10.1083/jcb.89.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tippit D. H., Schulz D., Pickett-Heaps J. D. Analysis of the distribution of spindle microtubules in the diatom Fragilaria. J Cell Biol. 1978 Dec;79(3):737–763. doi: 10.1083/jcb.79.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zieve G. W., Turnbull D., Mullins J. M., McIntosh J. R. Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp Cell Res. 1980 Apr;126(2):397–405. doi: 10.1016/0014-4827(80)90279-7. [DOI] [PubMed] [Google Scholar]
  26. Zieve G., Solomon F. Proteins specifically associated with the microtubules of the mammalian mitotic spindle. Cell. 1982 Feb;28(2):233–242. doi: 10.1016/0092-8674(82)90341-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES