Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Sep 1;94(3):574–585. doi: 10.1083/jcb.94.3.574

Characterization of a factor that promotes neurite outgrowth: evidence linking activity to a heparan sulfate proteoglycan

PMCID: PMC2112235  PMID: 6215411

Abstract

Rat sympathetic neurons, plated onto extracellular matrix produced by cultured bovine corneal endothelial cells, rapidly extended neurites in the absence of nerve growth factor (NGF). The response was unaffected by antiserum to NGF. Rapid outgrowth also occurred when sympathetic neurons were plated onto polylysine-coated surfaces that had been exposed to serum-free medium conditioned by corneal endothelial cells (CMSF). A response was seen even when the neurons were cultured without serum. When plated onto a polylysine-coated dish treated with CMSF over half its surface, only the neurons on the treated half extended neurites. The active factor in CMSF was destroyed by trypsin, acid (pH 1.6), base (pH 12.7), or heating to 80 degrees C; it was stable to heating to 60 degrees C, collagenase, deoxyribonuclease, and neuraminidase. The factor elutes just after the void volume of a Sepharose 6B column. In associative cesium chloride gradients, it sediments as a peak centered at a density of 1.36-1.37, corresponding to a peak of material that can be biosynthetically labeled with [35S]sulfate or [3H]leucine. Material from this fraction was inactivated by heparinase, but not chondroitinase ABC, implying that a heparin sulfate proteoglycan is essential for the factor's activity. Inactivation by contaminants in the heparinase preparation was ruled out. Further purification indicated that the active factor may exist as an aggregate containing a heparin sulfate proteoglycan and other molecules. CMSF also promoted neurite outgrowth by other types of neurons. Furthermore, a variety of cell types were shown to produce factors similar to that in CMSF.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler R., Manthorpe M., Skaper S. D., Varon S. Polyornithine-attached neurite-promoting factors (PNPFs). Culture sources and responsive neurons. Brain Res. 1981 Feb 9;206(1):129–144. doi: 10.1016/0006-8993(81)90105-0. [DOI] [PubMed] [Google Scholar]
  2. Adler R., Varon S. Cholinergic neuronotrophic factors: V. Segregation of survival- and neurite-promoting activities in heart-conditioned media. Brain Res. 1980 Apr 28;188(2):437–448. doi: 10.1016/0006-8993(80)90043-8. [DOI] [PubMed] [Google Scholar]
  3. Amano T., Richelson E., Nirenberg M. Neurotransmitter synthesis by neuroblastoma clones (neuroblast differentiation-cell culture-choline acetyltransferase-acetylcholinesterase-tyrosine hydroxylase-axons-dendrites). Proc Natl Acad Sci U S A. 1972 Jan;69(1):258–263. doi: 10.1073/pnas.69.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  5. Barde Y. A., Lindsay R. M., Monard D., Thoenen H. New factor released by cultured glioma cells supporting survival and growth of sensory neurones. Nature. 1978 Aug 24;274(5673):818–818. doi: 10.1038/274818a0. [DOI] [PubMed] [Google Scholar]
  6. Berg D. K., Fischbach G. D. Enrichment of spinal cord cell cultures with motoneurons. J Cell Biol. 1978 Apr;77(1):83–98. doi: 10.1083/jcb.77.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonyhady R. E., Hendry I. A., Hill C. E., McLennan I. S. Characterization of a cardiac muscle factor required for the survival of cultured parasympathetic neurones. Neurosci Lett. 1980 Jun;18(2):197–201. doi: 10.1016/0304-3940(80)90326-2. [DOI] [PubMed] [Google Scholar]
  8. Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Branford White C. J. Sulphated glycoproteins in synaptosomes. Neurosci Lett. 1980 Mar;16(3):307–311. doi: 10.1016/0304-3940(80)90016-6. [DOI] [PubMed] [Google Scholar]
  10. Chiarugi V. P., Vannucchi S. Surface heparan sulphate as a control element in eukariotic cells: a working model. J Theor Biol. 1976 Sep 21;61(2):459–475. doi: 10.1016/0022-5193(76)90030-8. [DOI] [PubMed] [Google Scholar]
  11. Chun L. L., Patterson P. H. Role of nerve growth factor in the development of rat sympathetic neurons in vitro. I. Survival, growth, and differentiation of catecholamine production. J Cell Biol. 1977 Dec;75(3):694–704. doi: 10.1083/jcb.75.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cohn R. H., Cassiman J. J., Bernfield M. R. Relationship of transformation, cell density, and growth control to the cellular distribution of newly synthesized glycosaminoglycan. J Cell Biol. 1976 Oct;71(1):280–294. doi: 10.1083/jcb.71.1.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Collins F. Axon initiation by ciliary neurons in culture. Dev Biol. 1978 Jul;65(1):50–57. doi: 10.1016/0012-1606(78)90178-1. [DOI] [PubMed] [Google Scholar]
  14. Collins F. Induction of neurite outgrowth by a conditioned-medium factor bound to the culture substratum. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5210–5213. doi: 10.1073/pnas.75.10.5210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Collins F. Neurite outgrowth induced by the substrate associated material from nonneuronal cells. Dev Biol. 1980 Sep;79(1):247–252. doi: 10.1016/0012-1606(80)90089-5. [DOI] [PubMed] [Google Scholar]
  16. Coughlin M. D., Bloom E. M., Black I. B. Characterization of a neuronal growth factor from mouse heart-cell-conditioned medium. Dev Biol. 1981 Feb;82(1):56–68. doi: 10.1016/0012-1606(81)90428-0. [DOI] [PubMed] [Google Scholar]
  17. Cowan W. M., Clarke P. G. The development of the isthmo-optic nucleus. Brain Behav Evol. 1976;13(5):345–375. doi: 10.1159/000123821. [DOI] [PubMed] [Google Scholar]
  18. Culp L. A., Ansbacher R., Domen C. Adhesion sites of neural tumor cells: biochemical composition. Biochemistry. 1980 Dec 9;19(25):5899–5907. doi: 10.1021/bi00566a036. [DOI] [PubMed] [Google Scholar]
  19. Culp L. A., Rollins B. J., Buniel J., Hitri S. Two functionally distinct pools of glycosaminoglycan in the substrate adhesion site of murine cells. J Cell Biol. 1978 Dec;79(3):788–801. doi: 10.1083/jcb.79.3.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Dribin L. B., Barrett J. N. Conditioned medium enhances neuritic outgrowth from rat spinal cord explants. Dev Biol. 1980 Jan;74(1):184–195. doi: 10.1016/0012-1606(80)90060-3. [DOI] [PubMed] [Google Scholar]
  21. Ebendal T., Belew M., Jacobson C. O., Porath J. Neurite outgrowth elicited by embryonic chick heart: partial purification of the active factor. Neurosci Lett. 1979 Sep;14(1):91–95. doi: 10.1016/0304-3940(79)95350-3. [DOI] [PubMed] [Google Scholar]
  22. Fields K. L., Brockes J. P., Mirsky R., Wendon L. M. Cell surface markers for distinguishing different types of rat dorsal root ganglion cells in culture. Cell. 1978 May;14(1):43–51. doi: 10.1016/0092-8674(78)90299-4. [DOI] [PubMed] [Google Scholar]
  23. Giard D. J., Aaronson S. A., Todaro G. J., Arnstein P., Kersey J. H., Dosik H., Parks W. P. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973 Nov;51(5):1417–1423. doi: 10.1093/jnci/51.5.1417. [DOI] [PubMed] [Google Scholar]
  24. Godfrey E. W., Schrier B. K., Nelson P. G. Source and target cell specificities of a conditioned medium factor that increases choline acetyltransferase activity in cultured spinal cord cells. Dev Biol. 1980 Jun 15;77(2):403–418. doi: 10.1016/0012-1606(80)90484-4. [DOI] [PubMed] [Google Scholar]
  25. Gospodarowicz D., Bialecki H., Greenburg G. Purification of the fibroblast growth factor activity from bovine brain. J Biol Chem. 1978 May 25;253(10):3736–3743. [PubMed] [Google Scholar]
  26. Gospodarowicz D., Delgado D., Vlodavsky I. Permissive effect of the extracellular matrix on cell proliferation in vitro. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4094–4098. doi: 10.1073/pnas.77.7.4094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gospodarowicz D., Greenburg G., Vlodavsky I., Alvarado J., Johnson L. K. The identification and localization of fibronectin in cultured corneal endothelial cells: cell surface polarity and physiological implications. Exp Eye Res. 1979 Nov;29(5):485–509. doi: 10.1016/0014-4835(79)90151-9. [DOI] [PubMed] [Google Scholar]
  28. Gospodarowicz D., Hirabayashi K., Giguère L., Tauber J. P. Factors controlling the proliferative rate, final cell density, and life span of bovine vascular smooth muscle cells in culture. J Cell Biol. 1981 Jun;89(3):568–578. doi: 10.1083/jcb.89.3.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gospodarowicz D., Ill C. R., Hornsby P. J., Gill G. N. Control of bovine adrenal cortical cell proliferation by fibroblast growth factor. Lack of effect of epidermal growth factor. Endocrinology. 1977 Apr;100(4):1080–1089. doi: 10.1210/endo-100-4-1080. [DOI] [PubMed] [Google Scholar]
  30. Gospodarowicz D., Ill C. Extracellular matrix and control of proliferation of vascular endothelial cells. J Clin Invest. 1980 Jun;65(6):1351–1364. doi: 10.1172/JCI109799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gospodarowicz D., Mescher A. L., Birdwell C. R. Stimulation of corneal endothelial cell proliferations in vitro by fibroblast and epidermal growth factors. Exp Eye Res. 1977 Jul;25(1):75–89. doi: 10.1016/0014-4835(77)90248-2. [DOI] [PubMed] [Google Scholar]
  32. Gospodarowicz D., Moran J. S., Braun D. L. Control of proliferation of bovine vascular endothelial cells. J Cell Physiol. 1977 Jun;91(3):377–385. doi: 10.1002/jcp.1040910307. [DOI] [PubMed] [Google Scholar]
  33. Gospodarowicz D., Moran J., Braun D., Birdwell C. Clonal growth of bovine vascular endothelial cells: fibroblast growth factor as a survival agent. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4120–4124. doi: 10.1073/pnas.73.11.4120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hawrot E., Patterson P. H. Long-term culture of dissociated sympathetic neurons. Methods Enzymol. 1979;58:574–584. doi: 10.1016/s0076-6879(79)58174-9. [DOI] [PubMed] [Google Scholar]
  35. Henderson C. E., Huchet M., Changeux J. P. Neurite outgrowth from embryonic chicken spinal neurons is promoted by media conditioned by muscle cells. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2625–2629. doi: 10.1073/pnas.78.4.2625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Hollyday M., Hamburger V. Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. J Comp Neurol. 1976 Dec 1;170(3):311–320. doi: 10.1002/cne.901700304. [DOI] [PubMed] [Google Scholar]
  37. Hurst R. E., Parmley R. T., Nakamura N., West S. S., Denys F. R. Heparan sulfate of AH-130 ascites hepatoma cells: a cell-surface glycosaminoglycan not displaced by heparin. J Histochem Cytochem. 1981 Jun;29(6):731–737. doi: 10.1177/29.6.6166666. [DOI] [PubMed] [Google Scholar]
  38. Kanwar Y. S., Farquhar M. G. Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4493–4497. doi: 10.1073/pnas.76.9.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Katz M. J., Lasek R. J. Substrate pathways which guide growing axons in Xenopus embryos. J Comp Neurol. 1979 Feb 15;183(4):817–831. doi: 10.1002/cne.901830409. [DOI] [PubMed] [Google Scholar]
  40. Kjellén L., Oldberg A., Hök M. Cell-surface heparan sulfate. Mechanisms of proteoglycan-cell association. J Biol Chem. 1980 Nov 10;255(21):10407–10413. [PubMed] [Google Scholar]
  41. Kraemer P. M., Tobey R. A. Cell-cycle dependent desquamation of heparan sulfate from the cell surface. J Cell Biol. 1972 Dec;55(3):713–717. doi: 10.1083/jcb.55.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Levi-Montalcini R., Booker B. DESTRUCTION OF THE SYMPATHETIC GANGLIA IN MAMMALS BY AN ANTISERUM TO A NERVE-GROWTH PROTEIN. Proc Natl Acad Sci U S A. 1960 Mar;46(3):384–391. doi: 10.1073/pnas.46.3.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Levinthal F., Macagno E., Levinthal C. Anatomy and development of identified cells in isogenic organisms. Cold Spring Harb Symp Quant Biol. 1976;40:321–331. doi: 10.1101/sqb.1976.040.01.032. [DOI] [PubMed] [Google Scholar]
  44. Lindahl U., Hök M. Glycosaminoglycans and their binding to biological macromolecules. Annu Rev Biochem. 1978;47:385–417. doi: 10.1146/annurev.bi.47.070178.002125. [DOI] [PubMed] [Google Scholar]
  45. Lindsay R. M., Tarbit J. Developmentally regulated induction of neurite outgrowth from immature chick sensory neurons (DRG) by homogenates of avian or mammalian heart, liver and brain. Neurosci Lett. 1979 May;12(2-3):195–200. doi: 10.1016/0304-3940(79)96061-0. [DOI] [PubMed] [Google Scholar]
  46. Lohmander L. S., Hascall V. C., Caplan A. I. Effects of 4-methyl umbelliferyl-beta-D-xylopyranoside on chondrogenesis and proteoglycan synthesis in chick limb bud mesenchymal cell cultures. J Biol Chem. 1979 Oct 25;254(20):10551–10561. [PubMed] [Google Scholar]
  47. Manthorpe M., Skaper S., Adler R., Landa K., Varon S. Cholinergic neuronotrophic factors: fractionation properties of an extract from selected chick embryonic eye tissues. J Neurochem. 1980 Jan;34(1):69–75. doi: 10.1111/j.1471-4159.1980.tb04622.x. [DOI] [PubMed] [Google Scholar]
  48. Margolis R. U., Margolis R. K., Chang L. B., Preti C. Glycosaminoglycans of brain during development. Biochemistry. 1975 Jan 14;14(1):85–88. doi: 10.1021/bi00672a014. [DOI] [PubMed] [Google Scholar]
  49. Nishi R., Berg D. K. Two components from eye tissue that differentially stimulate the growth and development of ciliary ganglion neurons in cell culture. J Neurosci. 1981 May;1(5):505–513. doi: 10.1523/JNEUROSCI.01-05-00505.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Obata K., Tanaka H. Conditioned medium promotes neurite growth from both central and peripheral neurons. Neurosci Lett. 1980 Jan;16(1):27–33. doi: 10.1016/0304-3940(80)90096-8. [DOI] [PubMed] [Google Scholar]
  51. Pollack E. D. Target-dependent survival of tadpole spinal cord neurites in tissue culture. Neurosci Lett. 1980 Mar;16(3):269–274. doi: 10.1016/0304-3940(80)90009-9. [DOI] [PubMed] [Google Scholar]
  52. Radhakrishnamurthy B., Smart F., Dalferes E. R., Jr, Berenson G. S. Isolation and characterization of proteoglycans from bovine lung. J Biol Chem. 1980 Aug 25;255(16):7575–7582. [PubMed] [Google Scholar]
  53. Sajdera S. W., Hascall V. C. Proteinpolysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures. J Biol Chem. 1969 Jan 10;244(1):77–87. [PubMed] [Google Scholar]
  54. Shimada K., Gill P. J., Silbert J. E., Douglas W. H., Fanburg B. L. Involvement of cell surface heparin sulfate in the binding of lipoprotein lipase to cultured bovine endothelial cells. J Clin Invest. 1981 Oct;68(4):995–1002. doi: 10.1172/JCI110354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sotelo J., Gibbs C. J., Jr, Gajdusek D. C., Toh B. H., Wurth M. Method for preparing cultures of central neurons: cytochemical and immunochemical studies. Proc Natl Acad Sci U S A. 1980 Jan;77(1):653–657. doi: 10.1073/pnas.77.1.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Stevens R. L., Austen K. F. Effect of p-nitrophenyl-beta-D-xyloside on proteoglycan and glycosaminoglycan biosynthesis in rat serosal mast cell cultures. J Biol Chem. 1982 Jan 10;257(1):253–259. [PubMed] [Google Scholar]
  57. Sundberg L., Porath J. Preparation of adsorbents for biospecific affinity chromatography. Attachment of group-containing ligands to insoluble polymers by means of bifuctional oxiranes. J Chromatogr. 1974 Mar 13;90(1):87–98. doi: 10.1016/s0021-9673(01)94777-6. [DOI] [PubMed] [Google Scholar]
  58. Toledo O. M., Dietrich C. P. Tissue specific distribution of sulfated mucopolysaccharides in mammals. Biochim Biophys Acta. 1977 Jun 23;498(1):114–122. doi: 10.1016/0304-4165(77)90092-7. [DOI] [PubMed] [Google Scholar]
  59. Varon S., Raiborn C. Dissociation, fractionation and culture of chick embryo sympathetic ganglionic cells. J Neurocytol. 1972 Oct;1(3):211–221. doi: 10.1007/BF01099934. [DOI] [PubMed] [Google Scholar]
  60. Wakshull E., Johnson M. I., Burton H. Postnatal rat sympathetic neurons in culture. I. A comparison with embryonic neurons. J Neurophysiol. 1979 Sep;42(5):1410–1425. doi: 10.1152/jn.1979.42.5.1410. [DOI] [PubMed] [Google Scholar]
  61. Weber M. J. A diffusible factor responsible for the determination of cholinergic functions in cultured sympathetic neurons. Partial purification and characterization. J Biol Chem. 1981 Apr 10;256(7):3447–3453. [PubMed] [Google Scholar]
  62. Yaffe D., Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 1977 Dec 22;270(5639):725–727. doi: 10.1038/270725a0. [DOI] [PubMed] [Google Scholar]
  63. Yamada K. M., Kennedy D. W., Kimata K., Pratt R. M. Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments. J Biol Chem. 1980 Jul 10;255(13):6055–6063. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES