Abstract
Near confluent monolayers of arterial smooth muscle cells derived from Macaca nemestrina were labeled with Na2[35S]O4 and the newly synthesized proteoglycans present in the culture medium and cell layer were extracted with either 4 M guanidine HCl (dissociative solvent) or 0.5 M guanidine HCl (associative solvent) in the presence of protease inhibitors. The proteoglycans in both compartments were further purified by cesium chloride density gradient ultracentrifugation. Two size classes of proteoglycans were observed in the medium as determined by chromatography on Sepharose CL-2B. The large population (Kav = 0.31) contained predominantly chondroitin sulfate chains with Mr = approximately 40,000. The smaller population (Kav = 0.61) contained dermatan sulfate chains of similar Mr (approximately 40,000). When tested for their ability to aggregate, only proteoglycans in the large- sized population were able to aggregate. A chondroitin sulfate containing proteoglycan with identical properties was isolated from the cell layer. In addition, the cell layer contained a dermatan sulfate component which eluted later on Sepharose CL-2B (Kav = 0.78) than the dermatan sulfate proteoglycan present in the medium. Electron microscopy of the purified proteoglycans revealed a bottlebrush structure containing a central core averaging 140 nm in length with an average of 8 to 10 side projections. The length of the side projections varied but averaged between 70 and 75 nm. Similar bottlebrush structures were observed in the intercellular matrix of the smooth muscle cell cultures after staining with Safranin 0. This culture system provides a model to investigate parameters involved in the regulation of synthesis and degradation of arterial proteoglycans.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buonassisi V. Sulfated mucopolysaccharide synthesis and secretion in endothelial cell cultures. Exp Cell Res. 1973 Feb;76(2):363–368. doi: 10.1016/0014-4827(73)90388-1. [DOI] [PubMed] [Google Scholar]
- Burke J. M., Ross R. Synthesis of connective tissue macromolecules by smooth muscle. Int Rev Connect Tissue Res. 1979;8:119–157. doi: 10.1016/b978-0-12-363708-6.50010-2. [DOI] [PubMed] [Google Scholar]
- Castellot J. J., Jr, Addonizio M. L., Rosenberg R., Karnovsky M. J. Cultured endothelial cells produce a heparinlike inhibitor of smooth muscle cell growth. J Cell Biol. 1981 Aug;90(2):372–379. doi: 10.1083/jcb.90.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Luca S., Heinegård D., Hascall V. C., Kimura J. H., Caplan A. I. Chemical and physical changes in proteoglycans during development of chick limb bud chondrocytes grown in vitro. J Biol Chem. 1977 Oct 10;252(19):6600–6608. [PubMed] [Google Scholar]
- Ehrlich K. C., Radhakrishnamurthy B., Berenson G. S. Isolation of a chondroitin sulfate--dermatan sulfate proteoglycan from bovine aorta. Arch Biochem Biophys. 1975 Nov;171(1):361–369. doi: 10.1016/0003-9861(75)90043-0. [DOI] [PubMed] [Google Scholar]
- Eisenstein R., Larsson S. E., Kuettner K. E., Sorgente N., Hascal V. C. The ground substance of the arterial wall. Part 1. Extractability of glycosaminoglycans and the isolation of a proteoglycan from bovine aorta. Atherosclerosis. 1975 Jul-Aug;22(1):1–17. doi: 10.1016/0021-9150(75)90064-7. [DOI] [PubMed] [Google Scholar]
- Engel U. R. Glycosaminoglycans in the aorta of six animal species. A chemical and morphological comparison of their topographical distribution. Atherosclerosis. 1971 Jan-Feb;13(1):45–60. doi: 10.1016/0021-9150(71)90005-0. [DOI] [PubMed] [Google Scholar]
- Faltz L. L., Reddi A. H., Hascall G. K., Martin D., Pita J. C., Hascall V. C. Characteristics of proteoglycans extracted from the Swarm rat chondrosarcoma with associative solvents. J Biol Chem. 1979 Feb 25;254(4):1375–1380. [PubMed] [Google Scholar]
- Fransson L. A., Havsmark B. Structure of dermatan sulfate. VII. The copolymeric structure of dermatan sulfate from horse aorta. J Biol Chem. 1970 Sep 25;245(18):4770–4783. [PubMed] [Google Scholar]
- Gamse G., Fromme H. G., Kresse H. Metabolism of sulfated glycosaminoglycans in cultured endothelial cells and smooth muscle cells from bovine aorta. Biochim Biophys Acta. 1978 Dec 18;544(3):514–528. doi: 10.1016/0304-4165(78)90326-4. [DOI] [PubMed] [Google Scholar]
- Gardais A., Picard J., Hermelin B. Glycosaminoglycan (GAG) distribution in aortic wall from five species. Comp Biochem Physiol B. 1973 Feb 15;44(2):507–515. doi: 10.1016/0305-0491(73)90025-4. [DOI] [PubMed] [Google Scholar]
- Gardell S., Baker J., Caterson B., Heinegård D., Rodén L. Link protein and a hyaluronic acid-binding region as components of aorta proteoglycan. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1823–1831. doi: 10.1016/s0006-291x(80)80111-2. [DOI] [PubMed] [Google Scholar]
- Goetinck P. F., Pennypacker J. P., Royal P. D. Proteochondroitin sulfate synthesis and chondrogenic expression. Exp Cell Res. 1974 Aug;87(2):241–248. doi: 10.1016/0014-4827(74)90476-5. [DOI] [PubMed] [Google Scholar]
- Habuchi H., Yamagata T., Iwata H., Suzuki S. The occurrence of a wide variety of dermatan sulfate-chondroitin sulfate copolymers in fibrous cartilage. J Biol Chem. 1973 Sep 10;248(17):6019–6028. [PubMed] [Google Scholar]
- Hascall G. K. Cartilage proteoglycans: comparison of sectioned and spread whole molecules. J Ultrastruct Res. 1980 Mar;70(3):369–375. doi: 10.1016/s0022-5320(80)80019-0. [DOI] [PubMed] [Google Scholar]
- Hascall V. C., Oegema T. R., Brown M., Caplan A. I. Isolation and characterization of proteoglycans from chick limb bud chondrocytes grown in vitro. J Biol Chem. 1976 Jun 10;251(11):3511–3519. [PubMed] [Google Scholar]
- Hascall V. C., Sajdera S. W. Proteinpolysaccharide complex from bovine nasal cartilage. The function of glycoprotein in the formation of aggregates. J Biol Chem. 1969 May 10;244(9):2384–2396. [PubMed] [Google Scholar]
- KAPLAN D., MEYER K. Mucopolysaccharides of aorta at various ages. Proc Soc Exp Biol Med. 1960 Oct;105:78–81. doi: 10.3181/00379727-105-26015. [DOI] [PubMed] [Google Scholar]
- Kimata K., Oike Y., Ito K., Karasawa K., Suzuki S. The occurrence of low buoyant density proteoglycans in embryonic chick cartilage. Biochem Biophys Res Commun. 1978 Dec 29;85(4):1431–1439. doi: 10.1016/0006-291x(78)91163-4. [DOI] [PubMed] [Google Scholar]
- Kimura J. H., Caputo C. B., Hascall V. C. The effect of cycloheximide on synthesis of proteoglycans by cultured chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1981 May 10;256(9):4368–4376. [PubMed] [Google Scholar]
- Kimura J. H., Hardingham T. E., Hascall V. C., Solursh M. Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1979 Apr 25;254(8):2600–2609. [PubMed] [Google Scholar]
- Kimura J. H., Osdoby P., Caplan A. I., Hascall V. C. Electron microscopic and biochemical studies of proteoglycan polydispersity in chick limb bud chondrocyte cultures. J Biol Chem. 1978 Jul 10;253(13):4721–4729. [PubMed] [Google Scholar]
- Kresse H., Heidel H., Buddecke E. Chemical and metabolic heterogeneity of a bovine aorta chondroitin sulfate-dermatan sulfate proteoglycan. Eur J Biochem. 1971 Oct 26;22(4):557–562. doi: 10.1111/j.1432-1033.1971.tb01577.x. [DOI] [PubMed] [Google Scholar]
- Kresse H., von Figura K., Buddecke E., Fromme H. G. Metabolism of sulfated glycosaminoglycans in cultivated bovine arterial cells. I. Characterization of different pools of sulfated glycosaminoglycans. Hoppe Seylers Z Physiol Chem. 1975 Jun;356(6):929–941. doi: 10.1515/bchm2.1975.356.s1.929. [DOI] [PubMed] [Google Scholar]
- Kumar V., Berenson G. S., Ruiz H., Dalferes E. R., Jr, Strong J. P. Acid mucopolysaccharides of human aorta. 1. Variations with maturation. J Atheroscler Res. 1967 Sep-Oct;7(5):573–581. doi: 10.1016/s0368-1319(67)80035-8. [DOI] [PubMed] [Google Scholar]
- Luft J. H. Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec. 1971 Nov;171(3):347–368. doi: 10.1002/ar.1091710302. [DOI] [PubMed] [Google Scholar]
- Madsen K., Lohmander S., Moskalewski S., Hinek A. Proteoglycans synthesized by fetal guinea pig chondrocytes in culture. Connect Tissue Res. 1978;5(4):205–210. doi: 10.3109/03008207809152274. [DOI] [PubMed] [Google Scholar]
- Madsen K., Lohmander S. Production of cartilage-typic proteoglycans in cultures of chondrocytes from elastic cartilage. Arch Biochem Biophys. 1979 Aug;196(1):192–198. doi: 10.1016/0003-9861(79)90566-6. [DOI] [PubMed] [Google Scholar]
- Mangkornkanok-Mark M., Eisenstein R., Bahu R. M. Immunologic studies of bovine aortic and cartilage proteoglycans. J Histochem Cytochem. 1981 Apr;29(4):547–552. doi: 10.1177/29.4.7019307. [DOI] [PubMed] [Google Scholar]
- Mayne R., Vail M. S., Miller E. J. Characterization of the collagen chains synthesized by cultured smooth muscle cells derived from rhesus monkey thoracic aorta. Biochemistry. 1978 Feb 7;17(3):446–452. doi: 10.1021/bi00596a011. [DOI] [PubMed] [Google Scholar]
- McMurtrey J., Radhakrishnamurthy B., Dalferes E. R., Jr, Berenson G. S., Gregory J. D. Isolation of proteoglycan-hyaluronate complexes from bovine aorta. J Biol Chem. 1979 Mar 10;254(5):1621–1626. [PubMed] [Google Scholar]
- Merrilees M. J., Merrilees M. A., Birnbaum P. S., Scott P. J., Flint M. H. The effect of centrifugal force on glycosaminoglycan production by aortic smooth muscle cells in culture. Atherosclerosis. 1977 Jul;27(3):259–264. doi: 10.1016/0021-9150(77)90034-x. [DOI] [PubMed] [Google Scholar]
- Norling B., Glimelius B., Westermark B., Wasteson A. A chondroitin sulphate proteoglycan from human cultured glial cells aggregates with hyaluronic acid. Biochem Biophys Res Commun. 1978 Oct 30;84(4):914–921. doi: 10.1016/0006-291x(78)91670-4. [DOI] [PubMed] [Google Scholar]
- Oegema T. R., Jr, Hascall V. C., Eisenstein R. Characterization of bovine aorta proteoglycan extracted with guanidine hydrochloride in the presence of protease inhibitors. J Biol Chem. 1979 Feb 25;254(4):1312–1318. [PubMed] [Google Scholar]
- Okayama M., Pacifici M., Holtzer H. Differences among sulfated proteoglycans synthesized in nonchondrogenic cells, presumptive chondroblasts, and chondroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3224–3228. doi: 10.1073/pnas.73.9.3224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oohira A., Nogami H. Age-related changes in physical and chemical properties of proteoglycans synthesized by costal and matrix-induced cartilages in the rat. J Biol Chem. 1980 Feb 25;255(4):1346–1350. [PubMed] [Google Scholar]
- Oohira A., Wight T. N., McPherson J., Bornstein P. Biochemical and ultrastructural studies of proteoheparan sulfates synthesized by PYS-2, a basement membrane-producing cell line. J Cell Biol. 1982 Feb;92(2):357–367. doi: 10.1083/jcb.92.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rollins B. J., Culp L. A. Preliminary characterization of the proteoglycans in the substrate adhesion sites of normal and virus-transformed murine cells. Biochemistry. 1979 Dec 11;18(25):5621–5629. doi: 10.1021/bi00592a016. [DOI] [PubMed] [Google Scholar]
- Rosenberg L., Hellmann W., Kleinschmidt A. K. Electron microscopic studies of proteoglycan aggregates from bovine articular cartilage. J Biol Chem. 1975 Mar 10;250(5):1877–1883. [PubMed] [Google Scholar]
- Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem. 1968 Apr 10;243(7):1536–1542. [PubMed] [Google Scholar]
- Salisbury B. G., Wagner W. D. Isolation and preliminary characterization of proteoglycans dissociatively extracted from human aorta. J Biol Chem. 1981 Aug 10;256(15):8050–8057. [PubMed] [Google Scholar]
- Scott J. E. Collagen--proteoglycan interactions. Localization of proteoglycans in tendon by electron microscopy. Biochem J. 1980 Jun 1;187(3):887–891. doi: 10.1042/bj1870887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shepard N., Mitchell N. The localization of proteoglycan by light and electron microscopy using safranin O. A study of epiphyseal cartilage. J Ultrastruct Res. 1976 Mar;54(3):451–460. doi: 10.1016/s0022-5320(76)80029-9. [DOI] [PubMed] [Google Scholar]
- Stefanovich V., Akiyama K. Comparative studies of aortic acid mucopolysaccharides in fifteen species. Comp Biochem Physiol. 1970 May 1;34(1):125–130. doi: 10.1016/0010-406x(70)90059-9. [DOI] [PubMed] [Google Scholar]
- Stevens R. L., Hascall V. C. Characterization of proteoglycans synthesized by rat chondrosarcoma chondrocytes treated with multiplication-stimulating activity and insulin. J Biol Chem. 1981 Feb 25;256(4):2053–2058. [PubMed] [Google Scholar]
- Thyberg J., Lohmander S., Heinegård D. Proteoglycans of hyaline cartilage: Electron-microscopic studies on isolated molecules. Biochem J. 1975 Oct;151(1):157–166. doi: 10.1042/bj1510157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vijayagopal P., Radhakrishnamurthy B., Srinivasan S. R., Berenson G. S. Studies of biologic properties of proteoglycans from bovine aorta. Lab Invest. 1980 Feb;42(2):190–196. [PubMed] [Google Scholar]
- Vogel K. G., Peterson D. W. Extracellular, surface, and intracellular proteoglycans produced by human embryo lung fibroblasts in culture (IMR-90). J Biol Chem. 1981 Dec 25;256(24):13235–13242. [PubMed] [Google Scholar]
- Wasteson A. A method for the determination of the molecular weight and molecular-weight distribution of chondroitin sulphate. J Chromatogr. 1971 Jul 8;59(1):87–97. doi: 10.1016/s0021-9673(01)80009-1. [DOI] [PubMed] [Google Scholar]
- Wieslander J., Heinegård D. Immunochemical analysis of cartilage proteoglycans. Cross-reactivity of molecules isolated from different species. Biochem J. 1981 Oct 1;199(1):81–87. doi: 10.1042/bj1990081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wight T. N. Differences in the synthesis and secretion of sulfated glycosaminoglycans by aorta explant monolayers cultured from atherosclerosis-susceptible and -resistant pigeons. Am J Pathol. 1980 Oct;101(1):127–142. [PMC free article] [PubMed] [Google Scholar]
- Wight T. N., Ross R. Proteoglycans in primate arteries. I. Ultrastructural localization and distribution in the intima. J Cell Biol. 1975 Dec;67(3):660–674. doi: 10.1083/jcb.67.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wight T. N., Ross R. Proteoglycans in primate arteries. II. Synthesis and secretion of glycosaminoglycans by arterial smooth muscle cells in culture. J Cell Biol. 1975 Dec;67(3):675–686. doi: 10.1083/jcb.67.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wight T. N. Vessel proteoglycans and thrombogenesis. Prog Hemost Thromb. 1980;5:1–39. [PubMed] [Google Scholar]