Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Jan 1;96(1):256–264. doi: 10.1083/jcb.96.1.256

Changes in plasma membrane glycoproteins of rat spermatozoa during maturation in the epididymis

PMCID: PMC2112256  PMID: 6298250

Abstract

Glycoproteins on the plasma membrane of testicular and cauda epididymidal spermatozoa have been labeled with galactose oxidase/NaB [3H]4 and sodium metaperiodate/NaB[3H]4, followed by analysis on SDS polyacrylamide gels. The major glycoprotein labeling on testicular spermatozoa has a molecular weight 110,000 whereas on cauda epididymidal spermatozoa greater than 90% of the radio-label is incorporated into proteins of molecular weight 32,000. These 32,000-mol wt X proteins are homologous with proteins of similar molecular weight purified from the epididymal secretion and which have been shown previously to be synthesized in the caput epididymidis under hormonal control. Immunofluorescence revealed that the 32,000-mol wt proteins are present on the flagellum of mature but not immature spermatozoa and that they have a patchy distribution suggesting that they are mobile within the plane of the membrane. The membrane-bound 32,000-mol wt proteins possess hydrophobic domains as revealed by charge-shift electrophoresis and they also label with a lipophilic photoaffinity probe suggesting that they are in contact with the lipid bilayer. The evidence indicates that there is a considerable reorganization of the molecular structure of the plasma membrane of spermatozoa during maturation in the epididymis and that some of the changes are brought about by a direct interaction with epididymal secretory proteins.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker L. D., Amann R. P. Epididymal physiology. II. Immunofluorescent analyses of epithelial secretion and absorption, and of bovine sperm maturation. J Reprod Fertil. 1971 Sep;26(3):319–332. doi: 10.1530/jrf.0.0260319. [DOI] [PubMed] [Google Scholar]
  2. Bernal A., Torres J., Reyes A., Rosado A. Presence and regional distribution of sialyl transferase in the epididymis of the rat. Biol Reprod. 1980 Sep;23(2):290–293. doi: 10.1095/biolreprod23.2.290. [DOI] [PubMed] [Google Scholar]
  3. Bigelow C. C. On the average hydrophobicity of proteins and the relation between it and protein structure. J Theor Biol. 1967 Aug;16(2):187–211. doi: 10.1016/0022-5193(67)90004-5. [DOI] [PubMed] [Google Scholar]
  4. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  5. Brooks D. E. Secretion of proteins and glycoproteins by the rat epididymis: regional differences, androgen-dependence, and effects of protease inhibitors, procaine, and tunicamycin. Biol Reprod. 1981 Dec;25(5):1099–1117. doi: 10.1095/biolreprod25.5.1099. [DOI] [PubMed] [Google Scholar]
  6. CONCHIE J., MANN T. Glycosidases in mammalian sperm and seminal plasma. Nature. 1957 Jun 8;179(4571):1190–1191. doi: 10.1038/1791190a0. [DOI] [PubMed] [Google Scholar]
  7. D'Agostino A., Jones R., White R., Parker M. G. Androgenic regulation of messenger RNA in rat epididymis. Biochem J. 1980 Sep 15;190(3):505–512. doi: 10.1042/bj1900505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  9. Feuchter F. A., Vernon R. B., Eddy E. M. Analysis of the sperm surface with monoclonal antibodies: topographically restricted antigens appearing in the epididymis. Biol Reprod. 1981 Jun;24(5):1099–1110. [PubMed] [Google Scholar]
  10. Fox N., Damjanov I., Knowles B. B., Solter D. Teratocarcinoma antigen is secreted by epididymal cells and coupled to maturing sperm. Exp Cell Res. 1982 Feb;137(2):485–488. doi: 10.1016/0014-4827(82)90058-1. [DOI] [PubMed] [Google Scholar]
  11. Frank E., Fischbach G. D. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J Cell Biol. 1979 Oct;83(1):143–158. doi: 10.1083/jcb.83.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gabel C. A., Eddy E. M., Shapiro B. M. Regional differentiation of the sperm surface as studied with 125I-diiodofluorescein isothiocyanate, an impermeant reagent that allows isolation of the labeled components. J Cell Biol. 1979 Sep;82(3):742–754. doi: 10.1083/jcb.82.3.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gathmann W. D., Aminoff D. Steric factors involved in the action of glycosidases and galactose oxidase. Biochem Biophys Res Commun. 1981 Nov 16;103(1):68–76. doi: 10.1016/0006-291x(81)91661-2. [DOI] [PubMed] [Google Scholar]
  14. Hamilton D. W. UDP-galactose:N-acetylglucosamine galactosyltransferase in fluids from rat rete testis and epididymis. Biol Reprod. 1980 Sep;23(2):377–385. doi: 10.1095/biolreprod23.2.377. [DOI] [PubMed] [Google Scholar]
  15. Hammerstedt R. H., Keith A. D., Hay S., Deluca N., Amann R. P. Changes in ram sperm membranes during epididymal transit. Arch Biochem Biophys. 1979 Aug;196(1):7–12. doi: 10.1016/0003-9861(79)90545-9. [DOI] [PubMed] [Google Scholar]
  16. Helenius A., Simons K. Charge shift electrophoresis: simple method for distinguishing between amphiphilic and hydrophilic proteins in detergent solution. Proc Natl Acad Sci U S A. 1977 Feb;74(2):529–532. doi: 10.1073/pnas.74.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jones R. Absorption and secretion in the cauda epididymidis of the rabbit and the effects of degenerating spermatozoa on epididymal plasma after castration. J Endocrinol. 1974 Oct;63(1):157–165. doi: 10.1677/joe.0.0630157. [DOI] [PubMed] [Google Scholar]
  18. Jones R. Comparative biochemistry of mammalian epididymal plasma. Comp Biochem Physiol B. 1978;61(3):365–370. doi: 10.1016/0305-0491(78)90138-4. [DOI] [PubMed] [Google Scholar]
  19. Kessler S. W. Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. J Immunol. 1975 Dec;115(6):1617–1624. [PubMed] [Google Scholar]
  20. Killian G. J., Amann R. P. Immunoelectrophoretic characterization of fluid and sperm entering and leaving the bovine epididymis. Biol Reprod. 1973 Dec;9(5):489–499. doi: 10.1093/biolreprod/9.5.489. [DOI] [PubMed] [Google Scholar]
  21. Koehler J. K., Gaddum-Rosse P. Media induced alterations of the membrane associated particles of the guinea pig sperm tail. J Ultrastruct Res. 1975 Apr;51(1):106–118. doi: 10.1016/s0022-5320(75)80012-8. [DOI] [PubMed] [Google Scholar]
  22. Koehler J. K. Lectins as probes of the spermatozoon surface. Arch Androl. 1981 May;6(3):197–217. doi: 10.3109/01485018108987531. [DOI] [PubMed] [Google Scholar]
  23. Koehler J. K., Perkins W. D. Fine structure observations on the distribution of antigenic sites on guinea pig spermatozoa. J Cell Biol. 1974 Mar;60(3):789–795. doi: 10.1083/jcb.60.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lopo A. C., Vacquier V. D. Antibody to a sperm surface glycoprotein inhibits the egg jelly-induced acrosome reaction of sea urchin sperm. Dev Biol. 1980 Oct;79(2):325–333. doi: 10.1016/0012-1606(80)90119-0. [DOI] [PubMed] [Google Scholar]
  26. Myles D. G., Primakoff P., Bellvé A. R. Surface domains of the guinea pig sperm defined with monoclonal antibodies. Cell. 1981 Feb;23(2):433–439. doi: 10.1016/0092-8674(81)90138-0. [DOI] [PubMed] [Google Scholar]
  27. Nicolson G. L., Yanagimachi R. Mobility and the restriction of mobility of plasma membrane lectin-binding components. Science. 1974 Jun 21;184(4143):1294–1296. doi: 10.1126/science.184.4143.1294. [DOI] [PubMed] [Google Scholar]
  28. O'Rand M. G. Restriction of a sperm surface antigen's mobility during capacitation. Dev Biol. 1977 Feb;55(2):260–270. doi: 10.1016/0012-1606(77)90171-3. [DOI] [PubMed] [Google Scholar]
  29. Olson G. E., Hamilton D. W. Characterization of the surface glycoproteins of rat spermatozoa. Biol Reprod. 1978 Aug;19(1):26–35. doi: 10.1095/biolreprod19.1.26. [DOI] [PubMed] [Google Scholar]
  30. Owen M. J., Knott J. C., Crumpton M. J. Labeling of lymphocyte surface antigens by the lipophilic, photoactivatable reagent hexanoyldiiodo-N-(4-azido-2-nitrophenyl)tyramine. Biochemistry. 1980 Jun 24;19(13):3092–3099. doi: 10.1021/bi00554a040. [DOI] [PubMed] [Google Scholar]
  31. Singh H., Kanfer J. N. Quantitation of galactocerebrosides and sulfatides by galactose oxidase and sodium borotritide. Anal Biochem. 1980 Nov 15;109(1):27–31. doi: 10.1016/0003-2697(80)90005-6. [DOI] [PubMed] [Google Scholar]
  32. Steck T. L., Dawson G. Topographical distribution of complex carbohydrates in the erythrocyte membrane. J Biol Chem. 1974 Apr 10;249(7):2135–2142. [PubMed] [Google Scholar]
  33. Vernon R. B., Muller C. H., Herr J. C., Feuchter F. A., Eddy E. M. Epididymal secretion of a mouse sperm surface component recognized by a monoclonal antibody. Biol Reprod. 1982 Apr;26(3):523–535. doi: 10.1095/biolreprod26.3.523. [DOI] [PubMed] [Google Scholar]
  34. Ward W. H., Britton P., van Heyningen S. The hydrophobicities of cholera toxin, tetanus toxin and their components. Biochem J. 1981 Nov 1;199(2):457–460. doi: 10.1042/bj1990457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wisnieski B. J., Bramhall J. S. Photolabelling of cholera toxin subunits during membrane penetration. Nature. 1981 Jan 22;289(5795):319–321. doi: 10.1038/289319a0. [DOI] [PubMed] [Google Scholar]
  36. Yanagimachi R., Noda Y. D., Fujimoto M., Nicolson G. L. The distribution of negative surface charges on mammalian spermatozoa. Am J Anat. 1972 Dec;135(4):497–519. doi: 10.1002/aja.1001350405. [DOI] [PubMed] [Google Scholar]
  37. Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem. 1969 Jul;30(1):148–152. doi: 10.1016/0003-2697(69)90383-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES