Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Jan 1;96(1):84–93. doi: 10.1083/jcb.96.1.84

Architecture of metaphase chromosomes and chromosome scaffolds

PMCID: PMC2112267  PMID: 6826654

Abstract

We have developed procedures for depositing intact mitotic chromosomes and isolated residual scaffolds on electron microscope grids at controlled and reproducible levels of compaction. The chromosomes were isolated using a recently developed aqueous method. Our study has addressed two different aspects of chromosome structure. First, we present a method for improved visualization of radial chromatin loops in undisrupted mitotic chromosomes. Second, we have visualized a nonhistone protein residual scaffold isolated from nuclease-digested chromosomes under conditions of low salt protein extraction. These scaffolds, which have an extremely simple protein composition, are the size of chromosomes, are fibrous in nature, and are found to retain differentiated regions that appear to derive from the kinetochores and the chromatid axis. When our standard preparation conditions were used, the scaffold appearance was found to be very reproducible. If the ionic conditions were varied, however, the scaffold appearance underwent dramatic changes. In the presence of millimolar concentrations of Mg++ or high concentrations of NaCl, the fibrous scaffold protein network was observed to undergo a lateral aggregation or assembly into a coarse meshlike structure. The alteration of scaffold structure was apparently reversible. This observation is consistent with a model in which the scaffolding network plays a dynamic role in chromosome condensation at mitosis.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adolph K. W. A serial sectioning study of the structure of human mitotic chromosomes. Eur J Cell Biol. 1981 Apr;24(1):146–153. [PubMed] [Google Scholar]
  2. Adolph K. W., Cheng S. M., Laemmli U. K. Role of nonhistone proteins in metaphase chromosome structure. Cell. 1977 Nov;12(3):805–816. doi: 10.1016/0092-8674(77)90279-3. [DOI] [PubMed] [Google Scholar]
  3. Adolph K. W. Isolation and structural organization of human mitotic chromosomes. Chromosoma. 1980;76(1):23–33. doi: 10.1007/BF00292223. [DOI] [PubMed] [Google Scholar]
  4. Adolphs K. W., Cheng S. M., Paulson J. R., Laemmli U. K. Isolation of a protein scaffold from mitotic HeLa cell chromosomes. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4937–4941. doi: 10.1073/pnas.74.11.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bak A. L., Zeuthen J., Crick F. H. Higher-order structure of human mitotic chromosomes. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1595–1599. doi: 10.1073/pnas.74.4.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bak A. L., Zeuthen J. Higher-order structure of mitotic chromosomes. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):367–377. doi: 10.1101/sqb.1978.042.01.038. [DOI] [PubMed] [Google Scholar]
  7. Benyajati C., Worcel A. Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster. Cell. 1976 Nov;9(3):393–407. doi: 10.1016/0092-8674(76)90084-2. [DOI] [PubMed] [Google Scholar]
  8. Berlowitz L., Kitchin R., Pallotta D. Histones and RNA synthesis: selective binding of histones by a synthetic polyanion in calf thymus nuclei. Biochim Biophys Acta. 1972 Mar 14;262(2):160–168. doi: 10.1016/0005-2787(72)90229-8. [DOI] [PubMed] [Google Scholar]
  9. Bloom S. E., Goodpasture C. An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. Hum Genet. 1976 Oct 28;34(2):199–206. doi: 10.1007/BF00278889. [DOI] [PubMed] [Google Scholar]
  10. Blumenthal A. B., Dieden J. D., Kapp L. N., Sedat J. W. Rapid isolation of metaphase chromosomes containing high molecular weight DNA. J Cell Biol. 1979 Apr;81(1):255–259. doi: 10.1083/jcb.81.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. CALLAN H. G. THE NATURE OF LAMPBRUSH CHROMOSOMES. Int Rev Cytol. 1963;15:1–34. doi: 10.1016/s0074-7696(08)61114-6. [DOI] [PubMed] [Google Scholar]
  12. Cook P. R., Brazell I. A. Spectrofluorometric measurement of the binding of ethidium to superhelical DNA from cell nuclei. Eur J Biochem. 1978 Mar 15;84(2):465–477. doi: 10.1111/j.1432-1033.1978.tb12188.x. [DOI] [PubMed] [Google Scholar]
  13. Dresser M. E., Moses M. J. Silver staining of synaptonemal complexes in surface spreads for light and electron microscopy. Exp Cell Res. 1979 Jul;121(2):416–419. doi: 10.1016/0014-4827(79)90023-5. [DOI] [PubMed] [Google Scholar]
  14. DuPraw E. J. Macromolecular organization of nuclei and chromosomes: a folded fibre model based on whole-mount electron microscopy. Nature. 1965 Apr 24;206(982):338–343. doi: 10.1038/206338a0. [DOI] [PubMed] [Google Scholar]
  15. Dupraw E. J. THE ORGANIZATION OF NUCLEI AND CHROMOSOMES IN HONEYBEE EMBRYONIC CELLS. Proc Natl Acad Sci U S A. 1965 Jan;53(1):161–168. doi: 10.1073/pnas.53.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Finch J. T., Lutter L. C., Rhodes D., Brown R. S., Rushton B., Levitt M., Klug A. Structure of nucleosome core particles of chromatin. Nature. 1977 Sep 1;269(5623):29–36. doi: 10.1038/269029a0. [DOI] [PubMed] [Google Scholar]
  17. Fletcher J. M. Light microscope analysis of meiotic prophase chromosomes by silver staining. Chromosoma. 1979 Apr 30;72(2):241–248. doi: 10.1007/BF00293237. [DOI] [PubMed] [Google Scholar]
  18. GALL J. Chromosome fibers from an interphase nucleus. Science. 1963 Jan 11;139(3550):120–121. doi: 10.1126/science.139.3550.120. [DOI] [PubMed] [Google Scholar]
  19. Gerace L., Blobel G. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell. 1980 Jan;19(1):277–287. doi: 10.1016/0092-8674(80)90409-2. [DOI] [PubMed] [Google Scholar]
  20. Hadlaczky G., Sumner A. T., Ross A. Protein-depleted chromosomes. I. Structure of isolated protein-depleted chromosomes. Chromosoma. 1981;81(4):537–555. doi: 10.1007/BF00285848. [DOI] [PubMed] [Google Scholar]
  21. Hadlaczky G., Sumner A. T., Ross A. Protein-depleted chromosomes. II. Experiments concerning the reality of chromosome scaffolds. Chromosoma. 1981;81(4):557–567. doi: 10.1007/BF00285849. [DOI] [PubMed] [Google Scholar]
  22. Howell W. M., Hsu T. C. Chromosome core structure revealed by silver staining. Chromosoma. 1979 Jun 21;73(1):61–66. doi: 10.1007/BF00294845. [DOI] [PubMed] [Google Scholar]
  23. Hyde J. E. Expansion of chicken erythrocyte nuclei upon limited micrococcal nuclease digestion. Correlation with higher order chromatin structure. Exp Cell Res. 1982 Jul;140(1):63–70. doi: 10.1016/0014-4827(82)90156-2. [DOI] [PubMed] [Google Scholar]
  24. Igó-Kemenes T., Zachau H. G. Domains in chromatin structure. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):109–118. doi: 10.1101/sqb.1978.042.01.012. [DOI] [PubMed] [Google Scholar]
  25. Kuo M. T. Comparison of chromosomal structures isolated under different conditions. Exp Cell Res. 1982 Mar;138(1):221–229. doi: 10.1016/0014-4827(82)90109-4. [DOI] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Laemmli U. K., Cheng S. M., Adolph K. W., Paulson J. R., Brown J. A., Baumbach W. R. Metaphase chromosome structure: the role of nonhistone proteins. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):351–360. doi: 10.1101/sqb.1978.042.01.036. [DOI] [PubMed] [Google Scholar]
  28. Lebkowski J. S., Laemmli U. K. Non-histone proteins and long-range organization of HeLa interphase DNA. J Mol Biol. 1982 Apr 5;156(2):325–344. doi: 10.1016/0022-2836(82)90332-1. [DOI] [PubMed] [Google Scholar]
  29. Lewis C. D., Laemmli U. K. Higher order metaphase chromosome structure: evidence for metalloprotein interactions. Cell. 1982 May;29(1):171–181. doi: 10.1016/0092-8674(82)90101-5. [DOI] [PubMed] [Google Scholar]
  30. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  31. Marsden M. P., Laemmli U. K. Metaphase chromosome structure: evidence for a radial loop model. Cell. 1979 Aug;17(4):849–858. doi: 10.1016/0092-8674(79)90325-8. [DOI] [PubMed] [Google Scholar]
  32. Miller O. L., Jr, Beatty B. R. Visualization of nucleolar genes. Science. 1969 May 23;164(3882):955–957. doi: 10.1126/science.164.3882.955. [DOI] [PubMed] [Google Scholar]
  33. Miller O. L., Jr Fine structure of lampbrush chromosomes. Natl Cancer Inst Monogr. 1965 Dec;18:79–99. [PubMed] [Google Scholar]
  34. Ohnuki Y. Structure of chromosomes. I. Morphological studies of the spiral structure of human somatic chromosomes. Chromosoma. 1968;25(4):402–428. doi: 10.1007/BF02327721. [DOI] [PubMed] [Google Scholar]
  35. Okada T. A., Comings D. E. A search for protein cores in chromosomes: is the scaffold an artifact? Am J Hum Genet. 1980 Nov;32(6):814–832. [PMC free article] [PubMed] [Google Scholar]
  36. Pathak S., Hsu T. C. Silver-stained structures in mammalian meiotic prophase. Chromosoma. 1979 Jan 8;70(2):195–203. doi: 10.1007/BF00288406. [DOI] [PubMed] [Google Scholar]
  37. Paulson J. R., Laemmli U. K. The structure of histone-depleted metaphase chromosomes. Cell. 1977 Nov;12(3):817–828. doi: 10.1016/0092-8674(77)90280-x. [DOI] [PubMed] [Google Scholar]
  38. Rattner J. B., Goldsmith M. R., Hamkalo B. A. Chromosome organization during male meiosis in Bombyx mori. Chromosoma. 1981;82(3):341–351. doi: 10.1007/BF00285760. [DOI] [PubMed] [Google Scholar]
  39. Rattner J. B., Goldsmith M., Hamkalo B. A. Chromatin organization during meiotic prophase of Bombyx mori. Chromosoma. 1980;79(2):215–224. doi: 10.1007/BF01175187. [DOI] [PubMed] [Google Scholar]
  40. Rattner J. B., Hamkalo B. A. Higher order structure in metaphase chromosomes. I. The 250 A fiber. Chromosoma. 1978 Dec 6;69(3):363–372. doi: 10.1007/BF00332139. [DOI] [PubMed] [Google Scholar]
  41. Sedat J., Manuelidis L. A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):331–350. doi: 10.1101/sqb.1978.042.01.035. [DOI] [PubMed] [Google Scholar]
  42. Stein A., Whitlock J. P., Jr, Bina M. Acidic polypeptides can assemble both histones and chromatin in vitro at physiological ionic strength. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5000–5004. doi: 10.1073/pnas.76.10.5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stubblefield E., Wray W. Architecture of the Chinese hamster metaphase chromosome. Chromosoma. 1971;32(3):262–294. doi: 10.1007/BF00284839. [DOI] [PubMed] [Google Scholar]
  44. Thoma F., Koller T., Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol. 1979 Nov;83(2 Pt 1):403–427. doi: 10.1083/jcb.83.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vogelstein B., Pardoll D. M., Coffey D. S. Supercoiled loops and eucaryotic DNA replicaton. Cell. 1980 Nov;22(1 Pt 1):79–85. doi: 10.1016/0092-8674(80)90156-7. [DOI] [PubMed] [Google Scholar]
  46. Wray W., Stubblefield E. A new method for the rapid isolation of chromosomes, mitotic apparatus, or nuclei from mammalian fibroblasts at near neutral pH. Exp Cell Res. 1970 Mar;59(3):469–478. doi: 10.1016/0014-4827(70)90656-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES