Abstract
An extensive network of transverse and longitudinal filamentous bridges was revealed when small myofibril bundles, prepared from Triton-EGTA- treated rabbit skeletal muscles, were extracted with Kl to remove the majority of thin and thick filaments. Transmission and scanning electron microscopic studies of these salt-resistant cytoskeletal residues indicated (a) small bundles of short transverse filaments connect adjacent myofibrils by forming Z to Z and M to M bridges; (b) parallel, continuous longitudinal filaments connect the peripheries of successive Z-disks and ensheath the sarcomere. These transverse and longitudinal filaments have the characteristic morphology of intermediate filaments; (c) two rings of tightly interwoven and tangled filaments, connected laterally by short filaments, encircle each Z disk. This double-ring also encircles a weblike meshwork which penetrates the sarcomeric space. From the peripheries of these rings, transverse and longitudinal intermediate filaments emerge; and (d) a massive amount of material translocated and accumulated near Z disks during Kl extraction. The residues were fairly resistant to solubilization by urea and SDS, and complete dissolution was achieved only with guanidinium chloride. SDS PAGE indicated that the residues consisted mainly of titin, nebulin, and variable amounts of residual myosin and actin. Desmin represented only a few percent of total residual proteins; however, it may be a major component of the intermediate filament network. We suggest that the intermediate filament should be considered an integral sarcomeric component that may play important cytoskeletal roles in muscle structure and mechanics.
Full Text
The Full Text of this article is available as a PDF (3.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett G. S., Fellini S. A., Toyama Y., Holtzer H. Redistribution of intermediate filament subunits during skeletal myogenesis and maturation in vitro. J Cell Biol. 1979 Aug;82(2):577–584. doi: 10.1083/jcb.82.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke P. A filamentous cytoskeleton in vertebrate smooth muscle fibers. J Cell Biol. 1976 Mar;68(3):539–556. doi: 10.1083/jcb.68.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Etlinger J. D., Zak R., Fischman D. A. Compositional studies of myofibrils from rabbit striated muscle. J Cell Biol. 1976 Jan;68(1):123–141. doi: 10.1083/jcb.68.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrans V. J., Roberts W. C. Intermyofibrillar and nuclear-myofibrillar connections in human and canine myocardium. An ultrastructural study. J Mol Cell Cardiol. 1973 Jun;5(3):247–257. doi: 10.1016/0022-2828(73)90065-5. [DOI] [PubMed] [Google Scholar]
- Granger B. L., Lazarides E. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Cell. 1979 Dec;18(4):1053–1063. doi: 10.1016/0092-8674(79)90218-6. [DOI] [PubMed] [Google Scholar]
- Granger B. L., Lazarides E. Synemin: a new high molecular weight protein associated with desmin and vimentin filaments in muscle. Cell. 1980 Dec;22(3):727–738. doi: 10.1016/0092-8674(80)90549-8. [DOI] [PubMed] [Google Scholar]
- Granger B. L., Lazarides E. The existence of an insoluble Z disc scaffold in chicken skeletal muscle. Cell. 1978 Dec;15(4):1253–1268. doi: 10.1016/0092-8674(78)90051-x. [DOI] [PubMed] [Google Scholar]
- Huiatt T. W., Robson R. M., Arakawa N., Stromer M. H. Desmin from avian smooth muscle. Purification and partial characterization. J Biol Chem. 1980 Jul 25;255(14):6981–6989. [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol. 1968 Sep;38(3):538–555. doi: 10.1083/jcb.38.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
- Lazarides E. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem. 1982;51:219–250. doi: 10.1146/annurev.bi.51.070182.001251. [DOI] [PubMed] [Google Scholar]
- Lin J. J. Monoclonal antibodies against myofibrillar components of rat skeletal muscle decorate the intermediate filaments of cultured cells. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2335–2339. doi: 10.1073/pnas.78.4.2335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama K., Matsubara S., Natori R., Nonomura Y., Kimura S. Connectin, an elastic protein of muscle. Characterization and Function. J Biochem. 1977 Aug;82(2):317–337. [PubMed] [Google Scholar]
- Nunzi M. G., Franzini-Armstrong C. Trabecular network in adult skeletal muscle. J Ultrastruct Res. 1980 Oct;73(1):21–26. doi: 10.1016/0022-5320(80)90112-4. [DOI] [PubMed] [Google Scholar]
- O'Shea J. M., Robson R. M., Hartzer M. K., Huiatt T. W., Rathbun W. E., Stromer M. H. Purification of desmin from adult mammalian skeletal muscle. Biochem J. 1981 May 1;195(2):345–356. doi: 10.1042/bj1950345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price M., Sanger J. W. Intermediate filaments connect z-discs in adult chicken muscle. J Exp Zool. 1979 May;208(2):263–269. doi: 10.1002/jez.1402080214. [DOI] [PubMed] [Google Scholar]
- Richardson F. L., Stromer M. H., Huiatt T. W., Robson R. M. Immunoelectron and immunofluorescence localization of desmin in mature avian muscles. Eur J Cell Biol. 1981 Dec;26(1):91–101. [PubMed] [Google Scholar]
- Rome E. Relaxation of glycerinated muscle: low-angle x-ray diffraction studies. J Mol Biol. 1972 Mar 28;65(2):331–345. doi: 10.1016/0022-2836(72)90285-9. [DOI] [PubMed] [Google Scholar]
- Somerville L. L., Wang K. The ultrasensitive silver "protein" stain also detects nanograms of nucleic acids. Biochem Biophys Res Commun. 1981 Sep 16;102(1):53–58. doi: 10.1016/0006-291x(81)91487-x. [DOI] [PubMed] [Google Scholar]
- Ullrick W. C., Toselli P. A., Saide J. D., Phear W. P. Fine structure of the vertebrate Z-disc. J Mol Biol. 1977 Sep;115(1):61–74. doi: 10.1016/0022-2836(77)90246-7. [DOI] [PubMed] [Google Scholar]
- Wang C., Asai D. J., Lazarides E. The 68,000-dalton neurofilament-associated polypeptide is a component of nonneuronal cells and of skeletal myofibrils. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1541–1545. doi: 10.1073/pnas.77.3.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K., McClure J., Tu A. Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3698–3702. doi: 10.1073/pnas.76.8.3698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K., Williamson C. L. Identification of an N2 line protein of striated muscle. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3254–3258. doi: 10.1073/pnas.77.6.3254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- dos Remedios C. G., Gilmour D. Is there a third type of filament in striated muscles? J Biochem. 1978 Jul;84(1):235–238. doi: 10.1093/oxfordjournals.jbchem.a132113. [DOI] [PubMed] [Google Scholar]