Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Feb 1;96(2):474–485. doi: 10.1083/jcb.96.2.474

Fibronectin expression during myogenesis

PMCID: PMC2112286  PMID: 6833367

Abstract

The biosynthesis and localization of fibronectin during chick muscle differentiation are described. This study employed two monoclonal antibodies, one that selectively killed mononucleated cells and one specific for avian fibronectin. These antibodies allowed precise analyses of fibronectin expression in well-defined cultures of myoblasts or myotubes and avoided the complications of exogenous fibronectin and contamination by fibroblasts or unfused myoblasts. Fibronectin synthesis, as a fraction of total protein synthesis, remains constant at 0.3-0.4% before and after myoblast fusion, suggesting that the absolute rate of fibronectin synthesis may increase somewhat when myotubes synthesize and accumulate myofibrillar proteins. The pattern of fibronectin arrangement does change during myogenesis. In myotube cultures, the appearance of pulse-labeled fibronectin at the cell surface and its secretion into the medium begin after a 2-3-h lag period, in contrast to the 30-min lag period observed in fibroblast cultures. This lag between polypeptide biosynthesis and the exteriorization of the new protein is thus a characteristic of each cell type rather than the protein. All of the major secretory proteins of myogenic cells, including fibronectin and collagenous components, share this 2-3-h intracellular transit time.

Full Text

The Full Text of this article is available as a PDF (5.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alitalo K., Kurkinen M., Vaheri A., Virtanen I., Rohde H., Timpl R. Basal lamina glycoproteins are produced by neuroblastoma cells. Nature. 1980 Oct 2;287(5781):465–466. doi: 10.1038/287465a0. [DOI] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Chen L. B. Alteration in cell surface LETS protein during myogenesis. Cell. 1977 Mar;10(3):393–400. doi: 10.1016/0092-8674(77)90026-5. [DOI] [PubMed] [Google Scholar]
  4. Chiquet M., Eppenberger H. M., Turner D. C. Muscle morphogenesis: Evidence for an organizing function of exogenous fibronectin. Dev Biol. 1981 Dec;88(2):220–235. doi: 10.1016/0012-1606(81)90166-4. [DOI] [PubMed] [Google Scholar]
  5. Chiquet M., Puri E. C., Turner D. C. Fibronectin mediates attachment of chicken myoblasts to a gelatin-coated substratum. J Biol Chem. 1979 Jun 25;254(12):5475–5482. [PubMed] [Google Scholar]
  6. Devlin R. B., Emerson C. P., Jr Coordinate regulation of contractile protein synthesis during myoblast differentiation. Cell. 1978 Apr;13(4):599–611. doi: 10.1016/0092-8674(78)90211-8. [DOI] [PubMed] [Google Scholar]
  7. Devreotes P. N., Gardner J. M., Fambrough D. M. Kinetics of biosynthesis of acetylcholine receptor and subsequent incorporation into plasma membrane of cultured chick skeletal muscle. Cell. 1977 Mar;10(3):365–373. doi: 10.1016/0092-8674(77)90023-x. [DOI] [PubMed] [Google Scholar]
  8. Furcht L. T., Mosher D. F., Wendelschafer-Crabb G. Immunocytochemical localization of fibronectin (LETS proteins) on the surface of L6 myoblasts: light and electron microscopic studies. Cell. 1978 Feb;13(2):263–271. doi: 10.1016/0092-8674(78)90195-2. [DOI] [PubMed] [Google Scholar]
  9. Garrels J. I. Changes in protein synthesis during myogenesis in a clonal cell line. Dev Biol. 1979 Nov;73(1):134–152. doi: 10.1016/0012-1606(79)90143-x. [DOI] [PubMed] [Google Scholar]
  10. Hahn L. H., Yamada K. M. Isolation and biological characterization of active fragments of the adhesive glycoprotein fibronectin. Cell. 1979 Dec;18(4):1043–1051. doi: 10.1016/0092-8674(79)90217-4. [DOI] [PubMed] [Google Scholar]
  11. Heggeness M. H., Ash J. F., Singer S. J. Transmembrane linkage of fibronectin to intracellular actin-containing filaments in cultured human fibroblasts. Ann N Y Acad Sci. 1978 Jun 20;312:414–417. doi: 10.1111/j.1749-6632.1978.tb16822.x. [DOI] [PubMed] [Google Scholar]
  12. Hynes R. O., Destree A. T. Relationships between fibronectin (LETS protein) and actin. Cell. 1978 Nov;15(3):875–886. doi: 10.1016/0092-8674(78)90272-6. [DOI] [PubMed] [Google Scholar]
  13. Hynes R. O., Martin G. S., Shearer M., Critchley D. R., Epstein C. J. Viral transformation of rat myoblasts: effects on fusion and surface properties. Dev Biol. 1976 Jan;48(1):35–46. doi: 10.1016/0012-1606(76)90043-9. [DOI] [PubMed] [Google Scholar]
  14. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  15. KONIGSBERG I. R. Clonal analysis of myogenesis. Science. 1963 Jun 21;140(3573):1273–1284. doi: 10.1126/science.140.3573.1273. [DOI] [PubMed] [Google Scholar]
  16. Kennett R. H., Denis K. A., Tung A. S., Klinman N. R. Hybrid plasmacytoma production: fusions with adult spleen cells, monoclonal spleen fragments, neonatal spleen cells and human spleen cells. Curr Top Microbiol Immunol. 1978;81:77–91. doi: 10.1007/978-3-642-67448-8_13. [DOI] [PubMed] [Google Scholar]
  17. Krieg T., Timpl R., Alitalo K., Kurkinen M., Vaheri A. Type III procollagen is the major collageneous component produced by a continuous rhabdomyosarcoma cell line. FEBS Lett. 1979 Aug 15;104(2):405–409. doi: 10.1016/0014-5793(79)80863-7. [DOI] [PubMed] [Google Scholar]
  18. Köhler G., Shulman M. J. Cellular and molecular restrictions of the lymphocyte fusion. Curr Top Microbiol Immunol. 1978;81:143–148. doi: 10.1007/978-3-642-67448-8_22. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  21. Laskey R. A. The use of intensifying screens or organic scintillators for visualizing radioactive molecules resolved by gel electrophoresis. Methods Enzymol. 1980;65(1):363–371. doi: 10.1016/s0076-6879(80)65047-2. [DOI] [PubMed] [Google Scholar]
  22. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  23. Podleski T. R., Greenberg I., Schlessinger J., Yamada K. M. Fibronectin delays the fusion of L6 myoblasts. Exp Cell Res. 1979 Sep;122(2):317–326. doi: 10.1016/0014-4827(79)90308-2. [DOI] [PubMed] [Google Scholar]
  24. Rotundo R. L., Fambrough D. M. Synthesis, transport and fate of acetylcholinesterase in cultured chick embryos muscle cells. Cell. 1980 Nov;22(2 Pt 2):583–594. doi: 10.1016/0092-8674(80)90368-2. [DOI] [PubMed] [Google Scholar]
  25. Sasse J., von der Mark H., Kühl U., Dessau W., von der Mark K. Origin of collagen types I, III, and V in cultures of avian skeletal muscle. Dev Biol. 1981 Apr 15;83(1):79–89. doi: 10.1016/s0012-1606(81)80010-3. [DOI] [PubMed] [Google Scholar]
  26. Singer I. I. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell. 1979 Mar;16(3):675–685. doi: 10.1016/0092-8674(79)90040-0. [DOI] [PubMed] [Google Scholar]
  27. Stenman S., Vaheri A. Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J Exp Med. 1978 Apr 1;147(4):1054–1064. doi: 10.1084/jem.147.4.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Walsh F. S., Moore S. E., Dhut S. Monoclonal antibody to human fibronectin: production and characterization using human muscle cultures. Dev Biol. 1981 May;84(1):121–132. doi: 10.1016/0012-1606(81)90376-6. [DOI] [PubMed] [Google Scholar]
  29. Walsh F. S., Phillips E. Specific changes in cellular glycoproteins and surface proteins during myogenesis in clonal muscle cells. Dev Biol. 1981 Jan 30;81(2):229–237. doi: 10.1016/0012-1606(81)90286-4. [DOI] [PubMed] [Google Scholar]
  30. Yamada K. M., Yamada S. S., Pastan I. Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1217–1221. doi: 10.1073/pnas.73.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES