Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Apr 1;96(4):1172–1177. doi: 10.1083/jcb.96.4.1172

Polarization of thyroid cells in culture: evidence for the basolateral localization of the iodide "pump" and of the thyroid-stimulating hormone receptor-adenyl cyclase complex

PMCID: PMC2112318  PMID: 6300145

Abstract

When cultured in collagen gel-coated dishes, thyroid cells organized into polarized monolayers. The basal poles of the cells were in contact with the collagen gel, whereas the apical surfaces were facing the culture medium. Under these culture conditions, thyroid cells do not concentrate iodide nor respond to acute stimulation by thyroid- stimulating hormone (TSH). To allow the free access of medium components to the basal poles, the gel was detached from the plastic dish and allowed to float in the culture medium. After release of the gel, the iodide concentration and acute response to TSH stimulation were restored. Increased cAMP levels, iodide efflux, and formation of apical pseudopods were observed. When the thyroid cells are cultured on collagen-coated Millipore filters glued to glass rings, the cell layer separates the medium in contact with the apical domain of the plasma membrane (inside the ring) from that bathing the basolateral domain (outside the ring). Iodide present in the basal medium was concentrated in the cells, whereas no transport was observed when iodide was added to the luminal side. Similarly, an acute effect of TSH was observed only when the hormone was added to the basal medium. These results show that the iodide concentration mechanism and the TSH receptor-adenylate cyclase complex are present only on the basolateral domain of thyroid cell plasma membranes.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andros G., Wollman S. H. Autoradiographic localization of radioiodide in the thyroid gland of the mouse. Am J Physiol. 1967 Jul;213(1):198–208. doi: 10.1152/ajplegacy.1967.213.1.198. [DOI] [PubMed] [Google Scholar]
  2. Cailla H. L., Racine-Weisbuch M. S., Delaage M. A. Adenosine 3',5' cyclic monophosphate assay at 10-15 mole level. Anal Biochem. 1973 Dec;56(2):394–407. doi: 10.1016/0003-2697(73)90205-4. [DOI] [PubMed] [Google Scholar]
  3. Chabaud O., Chebath J., Giraud A., Mauchamp J. Modulation by thyrotropin of thyroglobulin synthesis in cultured thyroid cells : correlations with polysome profile and cytoplasmic thyroglobulin mRNA content. Biochem Biophys Res Commun. 1980 Mar 13;93(1):118–126. doi: 10.1016/s0006-291x(80)80254-3. [DOI] [PubMed] [Google Scholar]
  4. Chambard M., Gabrion J., Mauchamp J. Influence of collagen gel on the orientation of epithelial cell polarity: follicle formation from isolated thyroid cells and from preformed monolayers. J Cell Biol. 1981 Oct;91(1):157–166. doi: 10.1083/jcb.91.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chambard M., Gabrion J., Verrier B., Mauchamp J. Thyroid cell polarization in culture and the expression of specialized functions. Prog Clin Biol Res. 1982;91:403–411. [PubMed] [Google Scholar]
  6. Chlapowski F. J., Haynes L. The growth and differentiation of transitional epithelium in vitro. J Cell Biol. 1979 Dec;83(3):605–614. doi: 10.1083/jcb.83.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chow S. Y., Woodbury D. M. Kinetics of distribution of radioactive perchlorate in rat and guinea-pig thyroid glands. J Endocrinol. 1970 Jun;47(2):207–218. doi: 10.1677/joe.0.0470207. [DOI] [PubMed] [Google Scholar]
  8. Chow S. Y., Yen-Chow Y. C., Woodbury D. M. Compartmentation in the turtle thyroid: water and iodide distribution. Endocrinology. 1981 Jun;108(6):2200–2209. doi: 10.1210/endo-108-6-2200. [DOI] [PubMed] [Google Scholar]
  9. Emerman J. T., Burwen S. J., Pitelka D. R. Substrate properties influencing ultrastructural differentiation of mammary epithelial cells in culture. Tissue Cell. 1979;11(1):109–119. doi: 10.1016/0040-8166(79)90011-9. [DOI] [PubMed] [Google Scholar]
  10. Ericson L. E. Exocytosis and endocytosis in the thyroid follicle cell. Mol Cell Endocrinol. 1981 Apr;22(1):1–24. doi: 10.1016/0303-7207(81)90098-8. [DOI] [PubMed] [Google Scholar]
  11. Fayet G., Hovsepian S. Active transport of iodide in isolated porcine thyroid cells. Application to an in vitro bioassay of thyrotropin. Mol Cell Endocrinol. 1977 Mar;7(1):67–78. doi: 10.1016/0303-7207(77)90076-4. [DOI] [PubMed] [Google Scholar]
  12. Fayet G., Pacheco H., Tixier R. Sur la reassociation in vitro des cellules isolees de thyrïde de porc et la biosynthése de la thyroglobuline. I. Conditions pour l'induction des reassociations cellulaires par la thyreostimuline. Bull Soc Chim Biol (Paris) 1970 Apr 17;52(3):299–306. [PubMed] [Google Scholar]
  13. Gabrion J. Relations entre l'appareil contractile et les phénomènes d'endocytose. Revue bibliographique et quelques données concernant la cellule thyroïdienne. Biochimie. 1981 Apr;63(4):325–345. doi: 10.1016/s0300-9084(81)80120-4. [DOI] [PubMed] [Google Scholar]
  14. Handler J. S., Steele R. E., Sahib M. K., Wade J. B., Preston A. S., Lawson N. L., Johnson J. P. Toad urinary bladder epithelial cells in culture: maintenance of epithelial structure, sodium transport, and response to hormones. Proc Natl Acad Sci U S A. 1979 Aug;76(8):4151–4155. doi: 10.1073/pnas.76.8.4151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Herzog V., Miller F. Structural and functional polarity of inside-out follicles prepared from pig thyroid gland. Eur J Cell Biol. 1981 Apr;24(1):74–84. [PubMed] [Google Scholar]
  16. Hoi Sang U., Saier M. H., Jr, Ellisman M. H. Tight junction formation is closely linked to the polar redistribution of intramembranous particles in aggregating MDCK epithelia. Exp Cell Res. 1979 Sep;122(2):384–391. doi: 10.1016/0014-4827(79)90315-x. [DOI] [PubMed] [Google Scholar]
  17. KERKOF P. R., LONG P. J., CHAIKOFF I. L. IN VITRO EFFECTS OF THYROTROPIC HORMONE. I. ON THE PATTERN OF ORGANIZATION OF MONOLAYER CULTURES OF ISOLATED SHEEP THYROID GLAND CELLS. Endocrinology. 1964 Feb;74:170–179. doi: 10.1210/endo-74-2-170. [DOI] [PubMed] [Google Scholar]
  18. Ketelbant-Balasse P., Rodesch F., Neve P., Pasteels J. M. Scanning electron microscope observations of apical surfaces of dog thyroid cells. Exp Eye Res. 1973 Apr;79(1):111–119. [PubMed] [Google Scholar]
  19. Lissitzky S., Fayet G., Giraud A., Verrier B., Torresani J. Thyrotrophin-induced aggregation and reorganization into follicles of isolated porcine-thyroid cells. 1. Mechanism of action of thyrotrophin and metabolic properties. Eur J Biochem. 1971 Dec 22;24(1):88–99. doi: 10.1111/j.1432-1033.1971.tb19658.x. [DOI] [PubMed] [Google Scholar]
  20. Lissitzky S., Fayet G., Verrier B., Hennen G., Jaquet P. Thyroid-stimulating hormone binding to cultured thyroid cells. FEBS Lett. 1973 Jan 1;29(1):20–24. doi: 10.1016/0014-5793(73)80006-7. [DOI] [PubMed] [Google Scholar]
  21. Mauchamp J., Margotat A., Chambard M., Charrier B., Remy L., Michel-Bechet M. Polarity of three-dimensional structures derived from isolated hog thyroid cells in primary culture. Cell Tissue Res. 1979;204(3):417–430. doi: 10.1007/BF00233653. [DOI] [PubMed] [Google Scholar]
  22. Mendelson C., Dufau M., Catt K. Gonadotropin binding and stimulation of cyclic adenosine 3':5'-monophosphate and testosterone production in isolated Leydig cells. J Biol Chem. 1975 Nov 25;250(22):8818–8823. [PubMed] [Google Scholar]
  23. Michalopoulos G., Pitot H. C. Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations. Exp Cell Res. 1975 Aug;94(1):70–78. doi: 10.1016/0014-4827(75)90532-7. [DOI] [PubMed] [Google Scholar]
  24. Nitsch L., Wollman S. H. Ultrastructure of intermediate stages in polarity reversal of thyroid epithelium in follicles in suspension culture. J Cell Biol. 1980 Sep;86(3):875–880. doi: 10.1083/jcb.86.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saez J. M., Evain D., Gallet D. Role of cyclic AMP and protein kinase on the steroidogenic action of ACTH, prostaglandin E1 and dibutyryl cyclic AMP in normal adrenal cells and adrenal tumor cells from humans. J Cyclic Nucleotide Res. 1978 Aug;4(4):311–321. [PubMed] [Google Scholar]
  26. Schumacher M., Hilz H. Protein-bound cAMP, total cAMP, and protein kinase activation in isolated bovine thyrocytes. Biochem Biophys Res Commun. 1978 Feb 14;80(3):511–518. doi: 10.1016/0006-291x(78)91598-x. [DOI] [PubMed] [Google Scholar]
  27. Strewler G. J., Orloff J. Role of cyclic nucleotides in the transport of water and electrolytes. Adv Cyclic Nucleotide Res. 1977;8:311–361. [PubMed] [Google Scholar]
  28. Verrier B., Chambard M., Mauchamp J. Specific inhibition by Na+ of TSH-stimulated thyroid cell adenylate cyclase. FEBS Lett. 1982 Feb 22;138(2):303–306. doi: 10.1016/0014-5793(82)80466-3. [DOI] [PubMed] [Google Scholar]
  29. Verrier B., Mauchamp J., Lissitzky S., Bugeia J. C., Pelassy C. Modulation of adenylate cyclase activity by thyrotropin in cultured thyroid cells: probable role in intracellular GTP. FEBS Lett. 1980 Jun 30;115(2):201–205. doi: 10.1016/0014-5793(80)81168-9. [DOI] [PubMed] [Google Scholar]
  30. Zamora P. O., Waterman R. E., Kerkof P. R. Early effects of thyrotropin on the surface morphology of thyroid cells in culture. J Ultrastruct Res. 1979 Nov;69(2):196–210. doi: 10.1016/s0022-5320(79)90110-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES