Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Apr 1;96(4):949–960. doi: 10.1083/jcb.96.4.949

Intracellular transport and storage of secretory proteins in relation to cytodifferentiation in neoplastic pancreatic acinar cells

PMCID: PMC2112322  PMID: 6833397

Abstract

The pancreatic acinar carcinoma established in rat by Reddy and Rao (1977, Science 198:78-80) demonstrates heterogeneity of cytodifferentiation ranging from cells containing abundant well- developed secretory granules to those with virtually none. We examined the synthesis intracellular transport and storage of secretory proteins in secretory granule-enriched (GEF) and secretory granule-deficient (GDF) subpopulations of neoplastic acinar cells separable by Percoll gradient centrifugation, to determine the secretory process in cells with distinctly different cytodifferentiation. The cells pulse-labeled with [3H]leucine for 3 min and chase incubated for up to 4 h were analyzed by quantitative electron microscope autoradiography. In GEF neoplastic cells, the results of grain counts and relative grain density estimates establish that the label moves successively from rough endoplasmic reticulum (RER) leads to the Golgi apparatus leads to post-Golgi vesicles (vacuoles or immature granules) leads to mature secretory granules, in a manner reminiscent of the secretory process in normal pancreatic acinar cells. The presence of approximately 40% of the label in association with secretory granules at 4 h postpulse indicates that GEF neoplastic cells retain (acquire) the essential regulatory controls of the secretory process. In GDF neoplastic acinar cells the drainage of label from RER is slower, but the peak label of approximately 20% in the Golgi apparatus is reached relatively rapidly (10 min postpulse). The movement of label from the Golgi to the post- Golgi vesicles is evident; further delineation of the secretory process in GDF neoplastic cells, however, was not possible due to lack of secretory granule differentiation. The movement of label from RER leads to the Golgi apparatus leads to the post-Golgi vesicles suggests that GDF neoplastic cells also synthesize secretory proteins, but to a lesser extent than the GEF cells. The reason(s) for the inability of GDF cells to concentrate and store exportable proteins remain to be elucidated.

Full Text

The Full Text of this article is available as a PDF (5.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Jamieson J. D. Studies on dispersed pancreatic exocrine cells. I. Dissociation technique and morphologic characteristics of separated cells. J Cell Biol. 1974 Dec;63(3):1037–1056. doi: 10.1083/jcb.63.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amsterdam A., Jamieson J. D. Studies on dispersed pancreatic exocrine cells. II. Functional characteristics of separated cells. J Cell Biol. 1974 Dec;63(3):1057–1073. doi: 10.1083/jcb.63.3.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becich M. J., Reddy J. K. Separation and characterization of neoplastic cell subpopulations of a transplantable rat pancreatic acinar carcinoma. Cancer Res. 1982 Sep;42(9):3729–3740. [PubMed] [Google Scholar]
  4. CARO L. G., PALADE G. E. PROTEIN SYNTHESIS, STORAGE, AND DISCHARGE IN THE PANCREATIC EXOCRINE CELL. AN AUTORADIOGRAPHIC STUDY. J Cell Biol. 1964 Mar;20:473–495. doi: 10.1083/jcb.20.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Case R. M. Synthesis, intracellular transport and discharge of exportable proteins in the pancreatic acinar cell and other cells. Biol Rev Camb Philos Soc. 1978 May;53(2):211–354. doi: 10.1111/j.1469-185x.1978.tb01437.x. [DOI] [PubMed] [Google Scholar]
  6. Castle J. D., Jamieson J. D., Palade G. E. Radioautographic analysis of the secretory process in the parotid acinar cell of the rabbit. J Cell Biol. 1972 May;53(2):290–311. doi: 10.1083/jcb.53.2.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehrenreich J. H., Bergeron J. J., Siekevitz P., Palade G. E. Golgi fractions prepared from rat liver homogenates. I. Isolation procedure and morphological characterization. J Cell Biol. 1973 Oct;59(1):45–72. doi: 10.1083/jcb.59.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FOULDS L. The experimental study of tumor progression: a review. Cancer Res. 1954 Jun;14(5):327–339. [PubMed] [Google Scholar]
  9. FRIEND C., HADDAD J. R. Tumor formation with transplants of spleen or liver from mice with virus-induced leukemia. J Natl Cancer Inst. 1960 Dec;25:1279–1285. [PubMed] [Google Scholar]
  10. Farquhar M. G., Reid J. J., Daniell L. W. Intracellular transport and packaging of prolactin: a quantitative electron microscope autoradiographic study of mammotrophs dissociated from rat pituitaries. Endocrinology. 1978 Jan;102(1):296–311. doi: 10.1210/endo-102-1-296. [DOI] [PubMed] [Google Scholar]
  11. Fey S. J., Bravo R., Larsen P. M., Bellatin J., Celis J. E. [35S]-methionine labelled polypeptides from secondary mouse kidney fibroblasts: coordinates and one dimensional peptide maps of some major polypeptides. Cell Biol Int Rep. 1981 May;5(5):491–500. doi: 10.1016/0309-1651(81)90176-4. [DOI] [PubMed] [Google Scholar]
  12. Fidler I. J., Hart I. R. Biological diversity in metastatic neoplasms: origins and implications. Science. 1982 Sep 10;217(4564):998–1003. doi: 10.1126/science.7112116. [DOI] [PubMed] [Google Scholar]
  13. Hand A. R., Oliver C. The Golgi apparatus: protein transport and packaging in secretory cells. Methods Cell Biol. 1981;23:137–153. [PubMed] [Google Scholar]
  14. Hansen L. J., Mangkornkanok/Mark M., Reddy J. K. Immunohistochemical localization of pancreatic exocrine enzymes in normal and neoplastic pancreatic acinar epithelium of rat. J Histochem Cytochem. 1981 Feb;29(2):309–313. doi: 10.1177/29.2.6166657. [DOI] [PubMed] [Google Scholar]
  15. Howell S. L., Kostianovsky M., Lacy P. E. Beta granule formation in isolated islets of langerhans: a study by electron microscopic radioautography. J Cell Biol. 1969 Sep;42(3):695–705. doi: 10.1083/jcb.42.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Iwanij V., Jamieson J. D. Biochemical analysis of secretory proteins synthesized by normal rat pancreas and by pancreatic acinar tumor cells. J Cell Biol. 1982 Dec;95(3):734–741. doi: 10.1083/jcb.95.3.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jamieson J. D. Basic mechanisms of cellular secretion. Summary and perspectives. Methods Cell Biol. 1981;23:547–558. [PubMed] [Google Scholar]
  18. Jamieson J. D., Ingber D. E., Muresan V., Hull B. E., Sarras M. P., Jr, Maylié-Pfenninger M. F., Iwanij V. Cell surface properties of normal, differentiating, and neoplastic pancreatic acinar cells. Cancer. 1981 Mar 15;47(6 Suppl):1516–1527. doi: 10.1002/1097-0142(19810315)47:6+<1516::aid-cncr2820471413>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  19. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules. J Cell Biol. 1967 Aug;34(2):597–615. doi: 10.1083/jcb.34.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements. J Cell Biol. 1968 Dec;39(3):589–603. doi: 10.1083/jcb.39.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jamieson J. D., Palade G. E. Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells. J Cell Biol. 1971 Jul;50(1):135–158. doi: 10.1083/jcb.50.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kraehenbuhl J. P., Racine L., Jamieson J. D. Immunocytochemical localization of secretory proteins in bovine pancreatic exocrine cells. J Cell Biol. 1977 Feb;72(2):406–423. doi: 10.1083/jcb.72.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MacDonald R. J., Crerar M. M., Swain W. F., Pictet R. L., Rutter W. J. Pancreas-specific genes: structure and expression. Cancer. 1981 Mar 15;47(6 Suppl):1497–1504. doi: 10.1002/1097-0142(19810315)47:6+<1497::aid-cncr2820471410>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  24. Nicolson G. L., Brunson K. W., Fidler I. J. Specificity of arrest, survival, and growth of selected metastatic variant cell lines. Cancer Res. 1978 Nov;38(11 Pt 2):4105–4111. [PubMed] [Google Scholar]
  25. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  26. Pictet R. L., Clark W. R., Williams R. H., Rutter W. J. An ultrastructural analysis of the developing embryonic pancreas. Dev Biol. 1972 Dec;29(4):436–467. doi: 10.1016/0012-1606(72)90083-8. [DOI] [PubMed] [Google Scholar]
  27. Reddy J. K., Rao M. S. Transplantable pancreatic carcinoma of the rat. Science. 1977 Oct 7;198(4312):78–80. doi: 10.1126/science.897688. [DOI] [PubMed] [Google Scholar]
  28. Reddy J. K., Rao M. S., Warren J. R., Qureshi S. A., Christensen E. I. Differentiation and DNA synthesis in pancreatic acinar carcinoma of rat. Cancer Res. 1980 Oct;40(10):3443–3454. [PubMed] [Google Scholar]
  29. Reddy J. K., Reddy M. K., Hansen L. J., Qureshi S. A. Secretion granules of transplantable pancreatic acinar carcinoma of rat. Biochem J. 1980 Jun 15;188(3):921–924. doi: 10.1042/bj1880921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rosenzweig L. J., Farquhar M. G. Sites of sulfate incorporation into mammotrophs and somatotrophs of the rat pituitary as determined by quantitative electron microscopic autoradiography. Endocrinology. 1980 Aug;107(2):422–431. doi: 10.1210/endo-107-2-422. [DOI] [PubMed] [Google Scholar]
  31. Salpeter M. M., Farquhar M. G. High resolution analysis of the secretory pathway in mammotrophs of the rat anterior pituitary. J Cell Biol. 1981 Oct;91(1):240–246. doi: 10.1083/jcb.91.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Scheele G. A. Two-dimensional electrophoresis in basic and clinical research, as exemplified by studies on the exocrine pancreas. Clin Chem. 1982 Apr;28(4 Pt 2):1056–1061. [PubMed] [Google Scholar]
  33. Stevens L. C., Little C. C. Spontaneous Testicular Teratomas in an Inbred Strain of Mice. Proc Natl Acad Sci U S A. 1954 Nov;40(11):1080–1087. doi: 10.1073/pnas.40.11.1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Till J. E., McCulloch E. A. Hemopoietic stem cell differentiation. Biochim Biophys Acta. 1980 Nov 26;605(4):431–459. doi: 10.1016/0304-419x(80)90009-8. [DOI] [PubMed] [Google Scholar]
  35. Uriel J. Retrodifferentiation and the fetal patterns of gene expression in cancer. Adv Cancer Res. 1979;29:127–174. doi: 10.1016/s0065-230x(08)60847-7. [DOI] [PubMed] [Google Scholar]
  36. Van Nest G. A., MacDonald R. J., Raman R. K., Rutter W. J. Proteins synthesized and secreted during rat pancreatic development. J Cell Biol. 1980 Sep;86(3):784–794. doi: 10.1083/jcb.86.3.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Walker A. M., Farquhar M. G. Preferential release of newly synthesized prolactin granules is the result of functional heterogeneity among mammotrophs. Endocrinology. 1980 Oct;107(4):1095–1104. doi: 10.1210/endo-107-4-1095. [DOI] [PubMed] [Google Scholar]
  38. Warren J. R., Trump M. J., Reddy J. K., Becich M. J. Carbamylcholine stimulation of protein secretion in pancreatic acinar carcinoma of rat. Cancer Lett. 1982 Mar-Apr;15(3):245–253. doi: 10.1016/0304-3835(82)90125-2. [DOI] [PubMed] [Google Scholar]
  39. Weibel E. R., Kistler G. S., Scherle W. F. Practical stereological methods for morphometric cytology. J Cell Biol. 1966 Jul;30(1):23–38. doi: 10.1083/jcb.30.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Young R. W. The role of the Golgi complex in sulfate metabolism. J Cell Biol. 1973 Apr;57(1):175–189. doi: 10.1083/jcb.57.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES