Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Apr 1;96(4):1138–1147. doi: 10.1083/jcb.96.4.1138

Association of methionyl-tRNA synthetase with detergent-insoluble components of the rough endoplasmic reticulum

PMCID: PMC2112329  PMID: 6339526

Abstract

Using fluorescent antibody staining, we have established the association of methionyl-tRNA synthetase with the endoplasmic reticulum in PtK2 cells. After Triton X-100 extraction, 70% of the recovered aminoacyl-tRNA synthetase activity was found in the detergent-insoluble fraction. This fraction of the enzyme remained localized with insoluble endoplasmic reticulum antigens and with ribosomes, which were stained with acridine orange. By both fluorescence microscopy and electron microscopy the organization of the detergent-insoluble residue was found to depend on the composition of the extracting solution. After extraction with a microtubule-stabilizing buffer containing EGTA, Triton X-100, and polyethylene glycol (Osburn, M., and K. Weber, 1977, Cell, 12:561-571) the ribosomes were aggregated in large clusters with remnants of membranes. After extraction with a buffer containing Triton X-100, sucrose, and CaCl2 (Fulton, A. B., K. M. Wang, and S. Penman, 1980, Cell, 20:849-857), the ribosomes were in small clusters and there were few morphologically recognizable membranes. In both cases the methionyl-tRNA synthetase and some endoplasmic reticulum antigens retained approximately their normal distribution in the cell. Double fluorochrome staining showed no morphological association of methionyl- tRNA synthetase with the microtubule, actin, or cytokeratin fiber systems of PtK2 cells. These observations demonstrate that detergent- insoluble cellular components, sometimes referred to as "cytoskeletal" preparations, contain significant amounts of nonfilamentous material including ribosomes, and membrane residue. Caution is required in speculating about intermolecular associations in such a complex cell fraction.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alzhanova A. T., Fedorov A. N., Ovchinnikov L. P., Spirin A. S. Eukaryotic aminoacyl-tRNA synthetases are RNA-binding proteins whereas prokaryotic ones are not. FEBS Lett. 1980 Nov 3;120(2):225–229. doi: 10.1016/0014-5793(80)80303-6. [DOI] [PubMed] [Google Scholar]
  2. Bandyopadhyay A. K., Deutscher M. P. Lipids associated with the aminoacyl-transfer RNA synthetase complex. J Mol Biol. 1973 Feb 25;74(2):257–261. doi: 10.1016/0022-2836(73)90112-5. [DOI] [PubMed] [Google Scholar]
  3. Ben-Ze'ev A., Duerr A., Solomon F., Penman S. The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins. Cell. 1979 Aug;17(4):859–865. doi: 10.1016/0092-8674(79)90326-x. [DOI] [PubMed] [Google Scholar]
  4. Ben-Ze'ev A., Horowitz M., Skolnik H., Abulafia R., Laub O., Aloni Y. The metabolism of SV40 RNA is associated with the cytoskeletal framework. Virology. 1981 Jun;111(2):475–487. doi: 10.1016/0042-6822(81)90350-0. [DOI] [PubMed] [Google Scholar]
  5. Cervera M., Dreyfuss G., Penman S. Messenger RNA is translated when associated with the cytoskeletal framework in normal and VSV-infected HeLa cells. Cell. 1981 Jan;23(1):113–120. doi: 10.1016/0092-8674(81)90276-2. [DOI] [PubMed] [Google Scholar]
  6. Dang C. V., Yang D. C. Affinity chromatography of rat liver aminoacyl-tRNA synthetase complex. Biochem Biophys Res Commun. 1978 Feb 28;80(4):709–714. doi: 10.1016/0006-291x(78)91302-5. [DOI] [PubMed] [Google Scholar]
  7. Fenselau A., Kaiser D., Wallis K. Nucleoside requirements for the in vitro growth of bovine aortic endothelial cells. J Cell Physiol. 1981 Sep;108(3):375–384. doi: 10.1002/jcp.1041080311. [DOI] [PubMed] [Google Scholar]
  8. Franke W. W., Fink A., Schmid E. Demonstration of the display of components of the endoplasmic reticulum system by indirect immunofluorescence microscopy using antibodies against cytochrome b(5) from rat liver microsomes. Cell Biol Int Rep. 1978 Sep;2(5):465–474. doi: 10.1016/0309-1651(78)90098-x. [DOI] [PubMed] [Google Scholar]
  9. Fulton A. B., Wan K. M., Penman S. The spatial distribution of polyribosomes in 3T3 cells and the associated assembly of proteins into the skeletal framework. Cell. 1980 Jul;20(3):849–857. doi: 10.1016/0092-8674(80)90331-1. [DOI] [PubMed] [Google Scholar]
  10. Gerace L., Blum A., Blobel G. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution. J Cell Biol. 1978 Nov;79(2 Pt 1):546–566. doi: 10.1083/jcb.79.2.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibson W. Polyoma virus proteins: a description of the structural proteins of the virion based on polyacrylamide gel electrophoresis and peptide analysis. Virology. 1974 Dec;62(2):319–336. doi: 10.1016/0042-6822(74)90395-x. [DOI] [PubMed] [Google Scholar]
  12. Hampel A., Enger M. D. Subcellular distribution of aminoacyl-transfer RNA synthetases in Chinese hamster ovary cell culture. J Mol Biol. 1973 Sep 15;79(2):285–293. doi: 10.1016/0022-2836(73)90006-5. [DOI] [PubMed] [Google Scholar]
  13. Herman I. M., Crisona N. J., Pollard T. D. Relation between cell activity and the distribution of cytoplasmic actin and myosin. J Cell Biol. 1981 Jul;90(1):84–91. doi: 10.1083/jcb.90.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hilderman R. H., Goldblatt P. J. Procedure for preparation and characterization of liver cells made permeable by treatment with toluene. Methods Cell Biol. 1977;15:371–380. doi: 10.1016/s0091-679x(08)60226-5. [DOI] [PubMed] [Google Scholar]
  15. Johnson D. L., Van Dang C., Yang D. C. Purification and characterization of lysyl-tRNA synthetase after dissociation of the particulate aminoacyl-tRNA synthetases from rat liver. J Biol Chem. 1980 May 10;255(9):4362–4366. [PubMed] [Google Scholar]
  16. Johnson D. L., Yang D. C. Stoichiometry and composition of an aminoacyl-tRNA synthetase complex from rat liver. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4059–4062. doi: 10.1073/pnas.78.7.4059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kreibich G., Czakó-Graham M., Grebenau R., Mok W., Rodriguez-Boulan E., Sabatini D. D. Characterization of the ribosomal binding site in rat liver rough microsomes: ribophorins I and II, two integral membrane proteins related to ribosome binding. J Supramol Struct. 1978;8(3):279–302. doi: 10.1002/jss.400080307. [DOI] [PubMed] [Google Scholar]
  18. Lamkin A. F., Smith D. W., Hurlbert R. B. Independent protein synthesis in isolated rat tumor nucleoli. Aminoacylation of endogenous transfer ribonucleic acid. Biochemistry. 1973 Oct 9;12(21):4137–4145. doi: 10.1021/bi00745a017. [DOI] [PubMed] [Google Scholar]
  19. Lenk R., Penman S. The cytoskeletal framework and poliovirus metabolism. Cell. 1979 Feb;16(2):289–301. doi: 10.1016/0092-8674(79)90006-0. [DOI] [PubMed] [Google Scholar]
  20. Lenk R., Ransom L., Kaufmann Y., Penman S. A cytoskeletal structure with associated polyribosomes obtained from HeLa cells. Cell. 1977 Jan;10(1):67–78. doi: 10.1016/0092-8674(77)90141-6. [DOI] [PubMed] [Google Scholar]
  21. Louvard D., Reggio H., Warren G. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J Cell Biol. 1982 Jan;92(1):92–107. doi: 10.1083/jcb.92.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meyer D. I., Louvard D., Dobberstein B. Characterization of molecules involved in protein translocation using a specific antibody. J Cell Biol. 1982 Feb;92(2):579–583. doi: 10.1083/jcb.92.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mirande M., Kellermann O., Waller J. P. Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. II. Structural characterization of the polypeptide components and immunological identification of the methionyl-tRNA synthetase subunit. J Biol Chem. 1982 Sep 25;257(18):11049–11055. [PubMed] [Google Scholar]
  24. NORTON S. J., KEY M. D., SCHOLES S. W. SOME STUDIES OF THE ASSOCIATION OF AMINO ACID-ACTIVATING ENZYMES WITH ISOLATED MICROSOMES OF CHICK EMBRYO. Arch Biochem Biophys. 1965 Jan;109:7–12. doi: 10.1016/0003-9861(65)90279-1. [DOI] [PubMed] [Google Scholar]
  25. Osborn M., Weber K. The display of microtubules in transformed cells. Cell. 1977 Nov;12(3):561–571. doi: 10.1016/0092-8674(77)90257-4. [DOI] [PubMed] [Google Scholar]
  26. Rao M. S., Rothblum L. I., Busch H. Presence of elongation factor 1 in nuclei and nucleoli of rat liver. Cell Biol Int Rep. 1978 Jan;2(1):25–32. doi: 10.1016/0309-1651(78)90081-4. [DOI] [PubMed] [Google Scholar]
  27. Roberts W. K., Olsen M. L. Studies on the formation and stability of aminoacyl-tRNA synthetase complexes from Ehrlich ascites cells. Biochim Biophys Acta. 1976 Dec 13;454(3):480–492. doi: 10.1016/0005-2787(76)90274-4. [DOI] [PubMed] [Google Scholar]
  28. Sakakibara K., Momoi T., Uchida T., Nagai Y. Evidence for association of glycosphingolipid with a colchicine-sensitive microtubule-like cytoskeletal structure of cultured cells. Nature. 1981 Sep 3;293(5827):76–78. doi: 10.1038/293076a0. [DOI] [PubMed] [Google Scholar]
  29. Saxholm H. J., Pitot H. C. Characterization of a proteolipid complex of aminoacyl-tRNA synthetases and transfer RNA from rat liver. Biochim Biophys Acta. 1979 May 24;562(3):386–399. doi: 10.1016/0005-2787(79)90103-5. [DOI] [PubMed] [Google Scholar]
  30. Schimmel P. R., Söll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 1979;48:601–648. doi: 10.1146/annurev.bi.48.070179.003125. [DOI] [PubMed] [Google Scholar]
  31. Siekevitz P., Zamecnik P. C. Ribosomes and protein synthesis. J Cell Biol. 1981 Dec;91(3 Pt 2):53s–65s. doi: 10.1083/jcb.91.3.53s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smulson M., Lin C. S., Chirikjian J. G. Function and properties of aminoacyl transferases and aminoacyl-tRNA synthetases in rat liver and HeLa cells. Arch Biochem Biophys. 1975 Apr;167(2):458–468. doi: 10.1016/0003-9861(75)90488-9. [DOI] [PubMed] [Google Scholar]
  33. Streuli C. H., Patel B., Critchley D. R. The cholera toxin receptor ganglioside GM remains associated with triton X-100 cytoskeletons of BALB/c-3T3 cells. Exp Cell Res. 1981 Dec;136(2):247–254. doi: 10.1016/0014-4827(81)90002-1. [DOI] [PubMed] [Google Scholar]
  34. Sun T. T., Green H. Immunofluorescent staining of keratin fibers in cultured cells. Cell. 1978 Jul;14(3):469–476. doi: 10.1016/0092-8674(78)90233-7. [DOI] [PubMed] [Google Scholar]
  35. Toh B. H., Lolait S. J., Mathy J. P., Baum R. Association of mitochondria with intermediate filaments and of polyribosomes with cytoplasmic actin. Cell Tissue Res. 1980;211(1):163–169. doi: 10.1007/BF00233731. [DOI] [PubMed] [Google Scholar]
  36. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tscherne J. S., Weinstein I. B., Lanks K. W., Gersten N. B., Cantor C. R. Phenylalanyl transfer ribonucleic acid synthetase activity associated with rat liver ribosomes and microsomes. Biochemistry. 1973 Sep 25;12(20):3859–3865. doi: 10.1021/bi00744a010. [DOI] [PubMed] [Google Scholar]
  38. Ussery M. A., Tanaka W. K., Hardesty B. Subcellular distribution of aminoacyl-tRNA synthetases in various eukaryotic cells. Eur J Biochem. 1977 Feb;72(3):491–500. doi: 10.1111/j.1432-1033.1977.tb11272.x. [DOI] [PubMed] [Google Scholar]
  39. Van Dang C., Yang D. C. Disassembly and gross structure of particulate aminoacyl-tRNA synthetases from rat liver. Isolation and the structural relationship of synthetase complexes. J Biol Chem. 1979 Jun 25;254(12):5350–5356. [PubMed] [Google Scholar]
  40. Webster R. E., Henderson D., Osborn M., Weber K. Three-dimensional electron microscopical visualization of the cytoskeleton of animal cells: immunoferritin identification of actin- and tubulin-containing structures. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5511–5515. doi: 10.1073/pnas.75.11.5511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wolosewick J. J., Porter K. R. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol. 1979 Jul;82(1):114–139. doi: 10.1083/jcb.82.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. van Venrooij W. J., Sillekens P. T., van Eekelen C. A., Reinders R. J. On the association of mRNA with the cytoskeleton in uninfected and adenovirus-infected human KB cells. Exp Cell Res. 1981 Sep;135(1):79–91. doi: 10.1016/0014-4827(81)90301-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES