Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Apr 1;96(4):1017–1029. doi: 10.1083/jcb.96.4.1017

Morphology of isolated triads

PMCID: PMC2112332  PMID: 6187754

Abstract

The triad is the junctional association of transverse tubule with sarcoplasmic reticulum terminal cisternae. A procedure for the isolation of highly enriched triads from skeletal muscle has been described in the previous paper. In the present study, the structural features of isolated triads have been examined by thin-section, negative-staining, and freeze-fracture electron microscopy. In isolated triads, key features of the structure observed in situ have been retained, including the osmiophilic "feet," junctional structures between the transverse tubule and terminal cisternae. New insight into triad structure is obtained by negative staining, which also enables visualization of feet at the junctional face of the terminal cisternae, whereas smaller surface particles, characteristic of calcium pump protein, are not visualized there. Therefore, the junctional face is different from the remainder of the sarcoplasmic reticulum membrane. Junctional feet as viewed by thin section or negative staining have similar periodicity and extend approximately 100 A from the surface of the membrane. Freeze-fracture of isolated triads reveals blocklike structures associated with the membrane of the terminal cisternae at the junctional face, interjunctional connections between the terminal cisternae and t-tubule, and intragap particles. The intragap particles can be observed to be closely associated with the t-tubule. The structure of isolated triads is susceptible to osmotic and salt perturbation, and examples are given regarding differential effects on transverse tubules and terminal cisternae. Conditions that adversely affect morphology must be considered in experimentation with triads as well as in their preparation and handling.

Full Text

The Full Text of this article is available as a PDF (7.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barchi R. L., Weigele J. B., Chalikian D. M., Murphy L. E. Muscle surface membranes: preparative methods affect apparent chemical properties and neurotoxin binding. Biochim Biophys Acta. 1979 Jan 5;550(1):59–76. doi: 10.1016/0005-2736(79)90115-9. [DOI] [PubMed] [Google Scholar]
  2. Bianchi C. P., Bolton T. C. Action of local anesthetics on coupling systems in muscle. J Pharmacol Exp Ther. 1967 Aug;157(2):388–405. [PubMed] [Google Scholar]
  3. Birks R. I., Davey D. F. An analysis of volume changes in the T-tubes of frog skeletal muscle exposed to sucrose. J Physiol. 1972 Apr;222(1):95–111. doi: 10.1113/jphysiol.1972.sp009789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brunschwig J. P., Brandt N., Caswell A. H., Lukeman D. S. Ultrastructural observations of isolated intact and fragmented junctions of skeletal muscle by use of tannic acid mordanting. J Cell Biol. 1982 Jun;93(3):533–542. doi: 10.1083/jcb.93.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell K. P., Franzini-Armstrong C., Shamoo A. E. Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the 'sarcoplasmic reticulum feet' associated with heavy sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1980 Oct 16;602(1):97–116. doi: 10.1016/0005-2736(80)90293-x. [DOI] [PubMed] [Google Scholar]
  6. Caswell A. H., Lau Y. H., Brunschwig J. P. Ouabain-binding vesicles from skeletal muscle. Arch Biochem Biophys. 1976 Oct;176(2):417–430. doi: 10.1016/0003-9861(76)90184-3. [DOI] [PubMed] [Google Scholar]
  7. Caswell A. H., Lau Y. H., Garcia M., Brunschwig J. P. Recognition and junction formation by isolated transverse tubules and terminal cisternae of skeletal muscle. J Biol Chem. 1979 Jan 10;254(1):202–208. [PubMed] [Google Scholar]
  8. Davey D. F., Dulhunty A. F., Fatkin D. Glycerol treatment in mammalian skeletal muscle. J Membr Biol. 1980;53(3):223–233. doi: 10.1007/BF01868828. [DOI] [PubMed] [Google Scholar]
  9. Deamer D. W., Baskin R. J. Ultrastructure of sarcoplasmic reticulum preparations. J Cell Biol. 1969 Jul;42(1):296–307. doi: 10.1083/jcb.42.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
  11. Eisenberg B. R., Eisenberg R. S. The T-SR junction in contracting single skeletal muscle fibers. J Gen Physiol. 1982 Jan;79(1):1–19. doi: 10.1085/jgp.79.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eisenberg B. R., Gilai A. Structural changes in single muscle fibers after stimulation at a low frequency. J Gen Physiol. 1979 Jul;74(1):1–16. doi: 10.1085/jgp.74.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eisenberg R. S., Gage P. W. Frog skeletal muscle fibers: changes in electrical properties after disruption of transverse tubular system. Science. 1967 Dec 29;158(3809):1700–1701. doi: 10.1126/science.158.3809.1700. [DOI] [PubMed] [Google Scholar]
  14. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  15. Fleischer S., Fleischer B., Stoeckenius W. Fine structure of lipid-depleted mitochondria. J Cell Biol. 1967 Jan;32(1):193–208. doi: 10.1083/jcb.32.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Franzini-Armstron C. Freeze fracture of skeletal muscle from the Tarantula spider. Structural differentiations of sarcoplasmic reticulum and transverse tubular system membranes. J Cell Biol. 1974 May;61(2):501–513. doi: 10.1083/jcb.61.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Franzini-Armstrong C., Heuser J. E., Reese T. S., Somlyo A. P., Somlyo A. V. T-tubule swelling in hypertonic solutions: a freeze substitution study. J Physiol. 1978 Oct;283:133–140. doi: 10.1113/jphysiol.1978.sp012492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Franzini-Armstrong C. Membrane particles and transmission at the triad. Fed Proc. 1975 Apr;34(5):1382–1389. [PubMed] [Google Scholar]
  19. Franzini-Armstrong C. STUDIES OF THE TRIAD : I. Structure of the Junction in Frog Twitch Fibers. J Cell Biol. 1970 Nov 1;47(2):488–499. doi: 10.1083/jcb.47.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Franzini-Armstrong C. Structure of sarcoplasmic reticulum. Fed Proc. 1980 May 15;39(7):2403–2409. [PubMed] [Google Scholar]
  21. Franzini-Armstrong C. Studies of the triad. II. Penetration of tracers into the junctional gap. J Cell Biol. 1971 Apr;49(1):196–203. doi: 10.1083/jcb.49.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Franzini-Armstrong C. Studies of the triad. IV. Structure of the junction in frog slow fibers. J Cell Biol. 1973 Jan;56(1):120–128. doi: 10.1083/jcb.56.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jorgensen A. O., Shen A. C., MacLennan D. H., Tokuyasu K. T. Ultrastructural localization of the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections. J Cell Biol. 1982 Feb;92(2):409–416. doi: 10.1083/jcb.92.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. KONO T., COLOWICK S. P. Isolation of skeletal muscle cell membrane and some of its properties. Arch Biochem Biophys. 1961 Jun;93:520–533. doi: 10.1016/s0003-9861(61)80046-5. [DOI] [PubMed] [Google Scholar]
  25. Kelly D. E., Kuda A. M. Subunits of the triadic junction in fast skeletal muscle as revealed by freeze-fracture. J Ultrastruct Res. 1979 Aug;68(2):220–233. doi: 10.1016/s0022-5320(79)90156-4. [DOI] [PubMed] [Google Scholar]
  26. Kelly D. E. The fine structure of skeletal muscle triad junctions. J Ultrastruct Res. 1969 Oct;29(1):37–49. doi: 10.1016/s0022-5320(69)80054-7. [DOI] [PubMed] [Google Scholar]
  27. Kometani T., Kasai M. Ionic permeability of sarcoplasmic reticulum vesicles measured by light scattering method. J Membr Biol. 1978 Jul 18;41(4):295–308. doi: 10.1007/BF01871994. [DOI] [PubMed] [Google Scholar]
  28. Lau Y. H., Caswell A. H., Brunschwig J. P., Baerwald R. j., Garcia M. Lipid analysis and freeze-fracture studies on isolated transverse tubules and sarcoplasmic reticulum subfractions of skeletal muscle. J Biol Chem. 1979 Jan 25;254(2):540–546. [PubMed] [Google Scholar]
  29. Lau Y. H., Caswell A. H., Brunschwig J. P. Isolation of transverse tubules by fractionation of triad junctions of skeletal muscle. J Biol Chem. 1977 Aug 10;252(15):5565–5574. [PubMed] [Google Scholar]
  30. Luff A. R., Atwood H. L. Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscles of the mouse during postnatal development. J Cell Biol. 1971 Nov;51(21):369–383. doi: 10.1083/jcb.51.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Martonosi A. Sarcoplasmic reticulum. IV. Solubilization of microsomal adenosine triphosphatase. J Biol Chem. 1968 Jan 10;243(1):71–81. [PubMed] [Google Scholar]
  33. Mathias R. T., Levis R. A., Eisenberg R. S. Electrical models of excitation-contraction coupling and charge movement in skeletal muscle. J Gen Physiol. 1980 Jul;76(1):1–31. doi: 10.1085/jgp.76.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Meissner G. Isolation and characterization of two types of sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1975 Apr 21;389(1):51–68. doi: 10.1016/0005-2736(75)90385-5. [DOI] [PubMed] [Google Scholar]
  35. Mitchell R. D., Palade P., Fleischer S. Purification of morphologically intact triad structures from skeletal muscle. J Cell Biol. 1983 Apr;96(4):1008–1016. doi: 10.1083/jcb.96.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. PORTER K. R., PALADE G. E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol. 1957 Mar 25;3(2):269–300. doi: 10.1083/jcb.3.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Packer L., Mehard C. W., Meissner G., Zahler W. L., Fleischer S. The structural role of lipids in mitochondrial and sarcoplasmic reticulum membranes. Freeze-fracture electron microscopy studies. Biochim Biophys Acta. 1974 Sep 6;363(2):159–181. doi: 10.1016/0005-2736(74)90056-x. [DOI] [PubMed] [Google Scholar]
  38. Peachey L. D., Eisenberg B. R. Helicoids in the T system and striations of frog skeletal muscle fibers seen by high voltage electron microscopy. Biophys J. 1978 May;22(2):145–154. doi: 10.1016/S0006-3495(78)85480-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
  40. REVEL J. P. The sarcoplasmic reticulum of the bat cricothroid muscle. J Cell Biol. 1962 Mar;12:571–588. doi: 10.1083/jcb.12.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rapoport S. I., Peachey L. D., Goldstein D. A. Swelling of the transverse tubular system in frog sartorius. J Gen Physiol. 1969 Aug;54(2):166–177. doi: 10.1085/jgp.54.2.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rayns D. G., Devine C. E., Sutherland C. L. Freeze fracture studies of membrane systems in vertebrate muscle. I. Striated muscle. J Ultrastruct Res. 1975 Mar;50(3):306–321. doi: 10.1016/s0022-5320(75)80063-3. [DOI] [PubMed] [Google Scholar]
  43. Saito A., Wang C. T., Fleischer S. Membrane asymmetry and enhanced ultrastructural detail of sarcoplasmic reticulum revealed with use of tannic acid. J Cell Biol. 1978 Dec;79(3):601–616. doi: 10.1083/jcb.79.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sato T. A modified method for lead staining of thin sections. J Electron Microsc (Tokyo) 1968;17(2):158–159. [PubMed] [Google Scholar]
  45. Schiaffino S., Hanzlíková V., Pierobon S. Relations between structure and function in rat skeletal muscle fibers. J Cell Biol. 1970 Oct;47(1):107–119. doi: 10.1083/jcb.47.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  47. Smith D. S., Aldrich H. C. Membrane systems of freeze-etched striated muscle. Tissue Cell. 1971;3(2):261–281. doi: 10.1016/s0040-8166(71)80022-8. [DOI] [PubMed] [Google Scholar]
  48. Somlyo A. V. Bridging structures spanning the junctioning gap at the triad of skeletal muscle. J Cell Biol. 1979 Mar;80(3):743–750. doi: 10.1083/jcb.80.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Walker S. M., Schrodt G. R., Currier G. J., Yuen J. W. Development of the triadic junction in skeletal muscle fibers of fetal and postnatal rats. Am J Phys Med. 1975 Apr;54(2):61–79. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES