Abstract
Monoclonal antibodies against the highly conserved ubiquitous calcium- binding protein, calmodulin (CaM), were produced by immunization of mouse primary spleen cell cultures. Dissociated spleen cells were cultured for 5 d in the presence of mixed thymocyte culture conditioned media (TCM) and purified bovine testes CaM (50 ng-1 mg). Following immunization, cells were fused with mouse myeloma cells (SP2/0, Ag 8.653) and cultured for 2-3 wk before initial screening for antibody. In five independent immunizations there was a range of 25-44% of the initial polyclonal cultures which produced antibodies reacting with purified CaM as determined by immunoassay. 80% of the cloned hybridoma produced IgM immunoglobulins while the remaining clones were IgG producers. This ratio was changed to 50% IgM and 50% IgG by subsequent extension of the in vitro immunization periods and reduced amounts of antigen and extended in vitro culturing. In vitro immunization introduces a new dimension to monoclonal antibody production where limited antigen or poorly antigenic proteins are of interest. The monoclonal antibodies produced in this study have enabled us to to selectively localize CaM in association with distinct subcellular structures, mitochondria, stress fibers, centrioles, and the mitotic spindle.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen B., Osborn M., Weber K. Specific visualization of the distribution of the calcium dependent regulatory protein of cyclic nucleotide phosphodiesterase (modulator protein) in tissue culture cells by immunofluorescence microscopy: mitosis and intercellular bridge. Cytobiologie. 1978 Aug;17(2):354–364. [PubMed] [Google Scholar]
- Andersson J., Coutinho A., Lernhardt W., Melchers F. Clonal growth and maturation to immunoglobulin secretion in vitro of every growth-inducible B lymphocyte. Cell. 1977 Jan;10(1):27–34. doi: 10.1016/0092-8674(77)90136-2. [DOI] [PubMed] [Google Scholar]
- Chafouleas J. G., Dedman J. R., Munjaal R. P., Means A. R. Calmodulin. Development and application of a sensitive radioimmunoassay. J Biol Chem. 1979 Oct 25;254(20):10262–10267. [PubMed] [Google Scholar]
- Click R. E., Benck L., Alter B. J. Immune responses in vitro. I. Culture conditions for antibody synthesis. Cell Immunol. 1972 Feb;3(2):264–276. doi: 10.1016/0008-8749(72)90165-7. [DOI] [PubMed] [Google Scholar]
- Dedman J. R., Welsh M. J., Means A. R. Ca2+-dependent regulator. Production and characterization of a monospecific antibody. J Biol Chem. 1978 Oct 25;253(20):7515–7521. [PubMed] [Google Scholar]
- Dziarski R. Preferential induction of autoantibody secretion in polyclonal activation by peptidoglycan and lipopolysaccharide. I. In vitro studies. J Immunol. 1982 Mar;128(3):1018–1025. [PubMed] [Google Scholar]
- Fuller G. M., Brinkley B. R., Boughter J. M. Immunofluorescence of mitotic spindles by using monospecific antibody against bovine brain tubulin. Science. 1975 Mar 14;187(4180):948–950. doi: 10.1126/science.1096300. [DOI] [PubMed] [Google Scholar]
- Hengartner H., Luzzati A. L., Schreier M. Fusion of in vitro immunized lymphoid cells with X63Ag8. Curr Top Microbiol Immunol. 1978;81:92–99. doi: 10.1007/978-3-642-67448-8_14. [DOI] [PubMed] [Google Scholar]
- Köhler G., Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976 Jul;6(7):511–519. doi: 10.1002/eji.1830060713. [DOI] [PubMed] [Google Scholar]
- LITTLEFIELD J. W. SELECTION OF HYBRIDS FROM MATINGS OF FIBROBLASTS IN VITRO AND THEIR PRESUMED RECOMBINANTS. Science. 1964 Aug 14;145(3633):709–710. doi: 10.1126/science.145.3633.709. [DOI] [PubMed] [Google Scholar]
- Luben R. A., Brazeau P., Böhlen P., Guillemin R. Monoclonal antibodies to hypothalamic growth hormone-releasing factor with picomoles of antigen. Science. 1982 Nov 26;218(4575):887–889. doi: 10.1126/science.6813967. [DOI] [PubMed] [Google Scholar]
- Luben R. A., Mohler M. A. In vitro immunization as an adjunct to the production of hybridomas producing antibodies against the lymphokine osteoclast activating factor. Mol Immunol. 1980 May;17(5):635–639. doi: 10.1016/0161-5890(80)90161-3. [DOI] [PubMed] [Google Scholar]
- Means A. R., Dedman J. R. Calmodulin--an intracellular calcium receptor. Nature. 1980 May 8;285(5760):73–77. doi: 10.1038/285073a0. [DOI] [PubMed] [Google Scholar]
- Pardue R. L., Kaetzel M. A., Hahn S. H., Brinkley B. R., Dedman J. R. The identification of calmodulin-binding sites on mitochondria in cultured 3T3 cells. Cell. 1981 Feb;23(2):533–542. doi: 10.1016/0092-8674(81)90149-5. [DOI] [PubMed] [Google Scholar]
- Reading C. L. Theory and methods for immunization in culture and monoclonal antibody production. J Immunol Methods. 1982 Sep 30;53(3):261–291. doi: 10.1016/0022-1759(82)90175-2. [DOI] [PubMed] [Google Scholar]
- Van Eldik L. J., Watterson D. M. Reproducible production of antiserum against vertebrate calmodulin and determination of the immunoreactive site. J Biol Chem. 1981 May 10;256(9):4205–4210. [PubMed] [Google Scholar]
- Wallace R. W., Cheung W. Y. Calmodulin. Production of an antibody in rabbit and development of a radioimmunoassay. J Biol Chem. 1979 Jul 25;254(14):6564–6571. [PubMed] [Google Scholar]
- Welsh M. J., Dedman J. R., Brinkley B. R., Means A. R. Calcium-dependent regulator protein: localization in mitotic apparatus of eukaryotic cells. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1867–1871. doi: 10.1073/pnas.75.4.1867. [DOI] [PMC free article] [PubMed] [Google Scholar]