Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Apr 1;96(4):961–969. doi: 10.1083/jcb.96.4.961

Differences in the stress fibers between fibroblasts and epithelial cells

PMCID: PMC2112337  PMID: 6339529

Abstract

In the stress fibers of two types of nonmuscle cells, epithelia (PtK2, bovine lens) and fibroblasts (Gerbil fibroma, WI-38, primary human) the spacing between sites of alpha-actinin localization differs by a factor of about 1.6 as determined by indirect immunofluorescence and ultrastructural localization with peroxidase-labeled antibody. Both methods reveal striations along the stress fibers with a center-to- center spacing in the range of 0.9 mum in epithelial cells and 1.5 mum in fibroblasts. Periodic densities spaced at comparable distances are seen in PtK2 and in gerbil fibroma cells when they are treated with tannic acid and examined in the electron microscope. In such cells, densities are found not only along stress fibers but also at cell-cell junctions, attachment plaques, and foci from which stress fibers radiate. These latter three sites all stain with alpha-actinin antibody on the light and electron microscope level. Stress fibers in the two cell types also vary in the periodicity produced by indirect immunofluorescence with tropomyosin antibodies. As is the case for alpha-actinin, the tropomyosin center-to-center banding is approximately 1.6 times as long in gerbil fibroma cells (1.7 mum) as it is in PtK2 cells (1.0 mum). These results suggest that the densities seen in the electron microscope are sites of alpha-actinin localization and that the proteins in stress fibers have an arrangement similar to that in striated muscle. We propose a sarcomeric model of stress fiber structure based on light and electron microscopic findings.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashhurst D. E. Z-line of the flight muscle of belostomatid water bugs. J Mol Biol. 1967 Jul 28;27(2):385–389. doi: 10.1016/0022-2836(67)90027-7. [DOI] [PubMed] [Google Scholar]
  2. Begg D. A., Rodewald R., Rebhun L. I. The visualization of actin filament polarity in thin sections. Evidence for the uniform polarity of membrane-associated filaments. J Cell Biol. 1978 Dec;79(3):846–852. doi: 10.1083/jcb.79.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boschek C. B., Jockusch B. M., Friis R. R., Back R., Grundmann E., Bauer H. Early changes in the distribution and organization of microfilament proteins during cell transformation. Cell. 1981 Apr;24(1):175–184. doi: 10.1016/0092-8674(81)90513-4. [DOI] [PubMed] [Google Scholar]
  4. Byers H. R., Fujiwara K. Stress fibers in cells in situ: immunofluorescence visualization with antiactin, antimyosin, and anti-alpha-actinin. J Cell Biol. 1982 Jun;93(3):804–811. doi: 10.1083/jcb.93.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CHAPMAN D. M., PANTIN C. F., ROBSON E. A. Muscle in coelenterates. Rev Can Biol. 1962 Sep-Dec;21:267–278. [PubMed] [Google Scholar]
  6. Del Castillo J., Anderson M., Smith D. S. Proventriculus of a marine annelid: muscle preparation with the longest recorded sarcomere. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1669–1672. doi: 10.1073/pnas.69.7.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feramisco J. R. Microinjection of fluorescently labeled alpha-actinin into living fibroblasts. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3967–3971. doi: 10.1073/pnas.76.8.3967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Franzini-Armstrong C. Natural variability in the length of thin and thick filaments in single fibres from a crab, Portunus depurator. J Cell Sci. 1970 Mar;6(2):559–592. doi: 10.1242/jcs.6.2.559. [DOI] [PubMed] [Google Scholar]
  9. Giacomelli F., Wiener J., Spiro D. Cross-striated arrays of filaments in endothelium. J Cell Biol. 1970 Apr;45(1):188–192. doi: 10.1083/jcb.45.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldman R. D., Chojnacki B., Yerna M. J. Ultrastructure of microfilament bundles in baby hamster kidney (BHK-21) cells. The use of tannic acid. J Cell Biol. 1979 Mar;80(3):759–766. doi: 10.1083/jcb.80.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldman R. D. The effects of cytochalasin B on the microfilaments of baby hamster kidney (BHK-21) cells. J Cell Biol. 1972 Feb;52(2):246–254. doi: 10.1083/jcb.52.2.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gordon W. E., 3rd, Bushnell A. Immunofluorescent and ultrastructural studies of polygonal microfilament networks in respreading non-muscle cells. Exp Cell Res. 1979 May;120(2):335–348. doi: 10.1016/0014-4827(79)90393-8. [DOI] [PubMed] [Google Scholar]
  13. Gordon W. E., 3rd Immunofluorescent and ultrastructural studies of "sarcomeric" units in stress fibers of cultured non-muscle cells. Exp Cell Res. 1978 Dec;117(2):253–260. doi: 10.1016/0014-4827(78)90138-6. [DOI] [PubMed] [Google Scholar]
  14. HUXLEY H. E. The contractile structure of cardiac and skeletal muscle. Circulation. 1961 Aug;24:328–335. doi: 10.1161/01.cir.24.2.328. [DOI] [PubMed] [Google Scholar]
  15. Herman I. M., Pollard T. D. Electron microscopic localization of cytoplasmic myosin with ferritin-labeled antibodies. J Cell Biol. 1981 Feb;88(2):346–351. doi: 10.1083/jcb.88.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoessli D., Rungger-Brändle E., Jockusch B. M., Gabbiani G. Lymphocyte alpha-actinin. Relationship to cell membrane and co-capping with surface receptors. J Cell Biol. 1980 Feb;84(2):305–314. doi: 10.1083/jcb.84.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jockusch B. M., Kelley K. H., Meyer R. K., Burger M. M. An efficient method to produce specific anti-actin. Histochemistry. 1978 Apr 4;55(3):177–184. doi: 10.1007/BF00495757. [DOI] [PubMed] [Google Scholar]
  18. Jockusch H., Jockusch B. M., Burger M. M. Nerve fibers in culture and their interactions with non-neural cells visualized by immunofluorescence. J Cell Biol. 1979 Mar;80(3):629–641. doi: 10.1083/jcb.80.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kreis T. E., Birchmeier W. Stress fiber sarcomeres of fibroblasts are contractile. Cell. 1980 Nov;22(2 Pt 2):555–561. doi: 10.1016/0092-8674(80)90365-7. [DOI] [PubMed] [Google Scholar]
  20. Kreis T. E., Winterhalter K. H., Birchmeier W. In vivo distribution and turnover of fluorescently labeled actin microinjected into human fibroblasts. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3814–3818. doi: 10.1073/pnas.76.8.3814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lazarides E. Actin, alpha-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells. J Cell Biol. 1976 Feb;68(2):202–219. doi: 10.1083/jcb.68.2.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lazarides E., Burridge K. Alpha-actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell. 1975 Nov;6(3):289–298. doi: 10.1016/0092-8674(75)90180-4. [DOI] [PubMed] [Google Scholar]
  23. Lazarides E. Tropomyosin antibody: the specific localization of tropomyosin in nonmuscle cells. J Cell Biol. 1975 Jun;65(3):549–561. doi: 10.1083/jcb.65.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Masaki T., Endo M., Ebashi S. Localization of 6S component of a alpha-actinin at Z-band. J Biochem. 1967 Nov;62(5):630–632. doi: 10.1093/oxfordjournals.jbchem.a128717. [DOI] [PubMed] [Google Scholar]
  26. Rash J. E., McDonald T. F., Sachs H. G., Ebert J. D. Muscle-like arrays in a fibroblast line. Nat New Biol. 1972 May 31;237(74):160–160. doi: 10.1038/newbio237160a0. [DOI] [PubMed] [Google Scholar]
  27. Robinson T. F., Winegrad S. The measurement and dynamic implications of thin filament lengths in heart muscle. J Physiol. 1979 Jan;286:607–619. doi: 10.1113/jphysiol.1979.sp012640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Röhlich P., Oláh I. Cross-striated fibrils in the endothelium of the rat myometral arterioles. J Ultrastruct Res. 1967 Jun;18(5):667–676. doi: 10.1016/s0022-5320(67)80212-0. [DOI] [PubMed] [Google Scholar]
  29. Sanger J. M., Sanger J. W. Banding and polarity of actin filaments in interphase and cleaving cells. J Cell Biol. 1980 Aug;86(2):568–575. doi: 10.1083/jcb.86.2.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sanger J. W. Changing patterns of actin localization during cell division. Proc Natl Acad Sci U S A. 1975 May;72(5):1913–1916. doi: 10.1073/pnas.72.5.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sanger J. W. Intracellular localization of actin with fluorescently labelled heavy meromyosin. Cell Tissue Res. 1975 Aug 27;161(4):431–434. doi: 10.1007/BF00224134. [DOI] [PubMed] [Google Scholar]
  32. Sanger J. W., Sanger J. M., Kreis T. E., Jockusch B. M. Reversible translocation of cytoplasmic actin into the nucleus caused by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5268–5272. doi: 10.1073/pnas.77.9.5268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spooner B. S., Yamada K. M., Wessells N. K. Microfilaments and cell locomotion. J Cell Biol. 1971 Jun;49(3):595–613. doi: 10.1083/jcb.49.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weber K., Groeschel-Stewart U. Antibody to myosin: the specific visualization of myosin-containing filaments in nonmuscle cells. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4561–4564. doi: 10.1073/pnas.71.11.4561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wehland J., Weber K. Distribution of fluorescently labeled actin and tropomyosin after microinjection in living tissue culture cells as observed with TV image intensification. Exp Cell Res. 1980 Jun;127(2):397–408. doi: 10.1016/0014-4827(80)90444-9. [DOI] [PubMed] [Google Scholar]
  36. Wulf E., Deboben A., Bautz F. A., Faulstich H., Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4498–4502. doi: 10.1073/pnas.76.9.4498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zigmond S. H., Otto J. J., Bryan J. Organization of myosin in a submembranous sheath in well-spread human fibroblasts. Exp Cell Res. 1979 Mar 15;119(2):205–219. doi: 10.1016/0014-4827(79)90349-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES