Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Oct 1;95(1):234–241. doi: 10.1083/jcb.95.1.234

Degranulation, membrane addition, and shape change during chemotactic factor-induced aggregation of human neutrophils

PMCID: PMC2112338  PMID: 7142287

Abstract

Neutrophils stimulated by the chemotactic factor formyl-methionyl- leucyl-phenyl-alanine (FMLP) undergo a transient change in surface properties that permits the cells to adhere more readily to surfaces and to each other. This transient change can be monitored by light scattering as stimulated neutrophils form aggregates while stirred in a platelet aggregometer. Maximum change in light scattering occurs within 1 min and correlates with an increase in the percentage of cells that are in aggregates of four or more cells and a decrease in the percentage of single cells. With time (3-5 min), small aggregates disappear and single cells reappear. The transient change in adhesiveness is accompanied by a persistent change in cell shape; the cells become polarized and protrude ruffles from one sector of the cell surface. During aggregation the cells adhere to one another with smooth sides together and ruffles pointed outward. During disaggregation the cells dissociate laterally with the simultaneous internalization of membrane in the region opposite the ruffles. Particle bound to the surface by charge (thorotrast, cationized ferritin) are concentrated and internalized in this region. The change in cell shape from round to ruffled occurs within seconds, suggesting that membrane is added to the cell surface from an intracellular store. We therefore quantified surface membrane by electron microscopy morphometry and measured a 25% increase within 10 s of adding FMLP. The source of new membrane appeared to be the specific granule membrane since the kinetics of granule discharge (between 30% and 50% of all release occurs in the first 10 s) correlate with the appearance of new membrane. Furthermore, the amount of membrane that appears at the cell surface at 10 s correlates with that lost from intracellular granules in that time. Chemotaxin-induced aggregation thus begins with granule discharge and membrane addition followed by protrusion of ruffles. Adherence is maximal at 60 s and the gradual loss of adhesiveness that follows is associated with uropod formation and enhanced endocytic activity.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bainton D. F., Ullyot J. L., Farquhar M. G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med. 1971 Oct 1;134(4):907–934. doi: 10.1084/jem.134.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowers B., Olszewski T. E., Hyde J. Morphometric analysis of volumes and surface areas in membrane compartments during endocytosis in Acanthamoeba. J Cell Biol. 1981 Mar;88(3):509–515. doi: 10.1083/jcb.88.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bretz U., Baggiolini M. Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes. J Cell Biol. 1974 Oct;63(1):251–269. doi: 10.1083/jcb.63.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fehr J., Dahinden C. Modulating influence of chemotactic factor-induced cell adhesiveness on granulocyte function. J Clin Invest. 1979 Jul;64(1):8–16. doi: 10.1172/JCI109466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gallin J. I. Degranulating stimuli decrease the neagative surface charge and increase the adhesiveness of human neutrophils. J Clin Invest. 1980 Feb;65(2):298–306. doi: 10.1172/JCI109672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gallin J. I., Wright D. G., Schiffmann E. Role of secretory events in modulating human neutrophil chemotaxis. J Clin Invest. 1978 Dec;62(6):1364–1374. doi: 10.1172/JCI109257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  8. Hoffstein S. T., Weissmann G., Pearlstein E. Fibonectin is a component of the surface coat of human neutrophils. J Cell Sci. 1981 Aug;50:315–327. doi: 10.1242/jcs.50.1.315. [DOI] [PubMed] [Google Scholar]
  9. Hoffstein S., Soberman R., Goldstein I., Weissmann G. Concanavalin A induces microtubule assembly and specific granule discharge in human polymorphonuclear leukocytes. J Cell Biol. 1976 Mar;68(3):781–787. doi: 10.1083/jcb.68.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoffstein S., Zurier R. B., Weissmann G. Mechanisms of lysosomal enzyme release from human leucocytes. III. Quantitative morphologic evidence for an effect of cyclic nucleotides and colchicine on degranulation. Clin Immunol Immunopathol. 1974 Nov;3(2):201–217. doi: 10.1016/0090-1229(74)90006-3. [DOI] [PubMed] [Google Scholar]
  11. Hoover R. L., Folger R., Haering W. A., Ware B. R., Karnovsky M. J. Adhesion of leukocytes to endothelium: roles of divalent cations, surface charge, chemotactic agents and substrate. J Cell Sci. 1980 Oct;45:73–86. doi: 10.1242/jcs.45.1.73. [DOI] [PubMed] [Google Scholar]
  12. Issekutz A. C., Lee K. Y., Biggar W. D. Enhancement of human neutrophil bactericidal activity by chemotactic factors. Infect Immun. 1979 May;24(2):295–301. doi: 10.1128/iai.24.2.295-301.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Korchak H. M., Weissmann G. Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3818–3822. doi: 10.1073/pnas.75.8.3818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lackie J. M. The aggregation of rabbit polymorphonuclear leukocytes (PMN's): effects of agents which affect the acute inflammatory response and correlation with secretory activity. Inflammation. 1977 Mar;2(1):1–15. doi: 10.1007/BF00920870. [DOI] [PubMed] [Google Scholar]
  15. Niedel J. E., Kahane I., Cuatrecasas P. Receptor-mediated internalization of fluorescent chemotactic peptide by human neutrophils. Science. 1979 Sep 28;205(4413):1412–1414. doi: 10.1126/science.472759. [DOI] [PubMed] [Google Scholar]
  16. O'Flaherty J. T., Kreutzer D. L., Ward P. A. The influence of chemotactic factors on neutrophil adhesiveness. Inflammation. 1978 Mar;3(1):37–48. doi: 10.1007/BF00917320. [DOI] [PubMed] [Google Scholar]
  17. Pryzwansky K. B., MacRae E. K., Spitznagel J. K., Cooney M. H. Early degranulation of human neutrophils: immunocytochemical studies of surface and intracellular phagocytic events. Cell. 1979 Dec;18(4):1025–1033. doi: 10.1016/0092-8674(79)90215-0. [DOI] [PubMed] [Google Scholar]
  18. Sacks T., Moldow C. F., Craddock P. R., Bowers T. K., Jacob H. S. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest. 1978 May;61(5):1161–1167. doi: 10.1172/JCI109031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Simchowitz L., Mehta J., Spilberg I. Chemotactic factor-induced generation of superoxide radicals by human neutrophils: effect of metabolic inhibitors and antiinflammatory drugs. Arthritis Rheum. 1979 Jul;22(7):755–763. doi: 10.1002/art.1780220711. [DOI] [PubMed] [Google Scholar]
  20. Smith C. W., Hollers J. C., Patrick R. A., Hassett C. Motility and adhesiveness in human neutrophils. Effects of chemotactic factors. J Clin Invest. 1979 Feb;63(2):221–229. doi: 10.1172/JCI109293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sullivan S. J., Zigmond S. H. Chemotactic peptide receptor modulation in polymorphonuclear leukocytes. J Cell Biol. 1980 Jun;85(3):703–711. doi: 10.1083/jcb.85.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Van Epps D. E., Garcia M. L. Enhancement of neutrophils function as a result of prior exposure to chemotactic factor. J Clin Invest. 1980 Aug;66(2):167–175. doi: 10.1172/JCI109841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Weinbaum D. L., Sullivan J. A., Mandell G. L. Receptors for concanavalin A cluster at the front of polarized neutrophils. Nature. 1980 Aug 14;286(5774):725–727. doi: 10.1038/286725a0. [DOI] [PubMed] [Google Scholar]
  24. White J. G., Estensen R. D. Selective labilization of specific granules in polymorphonuclear leukocytes by phorbol myristate acetate. Am J Pathol. 1974 Apr;75(1):45–60. [PMC free article] [PubMed] [Google Scholar]
  25. Wright D. G., Gallin J. I. Secretory responses of human neutrophils: exocytosis of specific (secondary) granules by human neutrophils during adherence in vitro and during exudation in vivo. J Immunol. 1979 Jul;123(1):285–294. [PubMed] [Google Scholar]
  26. Wright D. G., Kauffmann J. C., Terpstra G. K., Graw R. G., Deisseroth A. B., Gallin J. I. Mobilization and exocytosis of specific (secondary) granules by human neutrophils during adherence to nylon wood in filtration leukapheresis (FL). Blood. 1978 Oct;52(4):770–782. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES