Abstract
The phenomenon of intracellular pH (pHin) regulation in cultured Ehrlich ascites cells was investigated using 31P nuclear magnetic resonance (NMR) spectroscopy. Measurements were made with a Bruker WH 360 wide bore NMR spectrometer at a 31P frequency of 145.78 MHz. Samples at a density of 10(8) cells ml-1 were suspended in a final volume of 2 ml of growth medium in 10 mm diameter NMR tubes. Intracellular pH was calculated from the chemical shifts of either intracellular inorganic phosphate (Piin) or intracellular 2- deoxyglucose-6-phosphate (2dG6Pin). The sugar phosphate was used as a pH probe to supplement the Piin measurements, which could not always be observed. When available, the pHin calculated from the Piin peak was identical within experimental error to the pHin calculated from the 2dG6Pin peak. Intracellular pH was measured to be more alkaline than the medium at an external pH (pHex) below 7.1. Typical values were pHin = 7.00 for pHex = 6.50. These measurements were constant for times up to 165 min using well-energized, respiring cells. This pH gradient was seen to collapse immediately upon onset of anaerobic shock. Above a pHex of 7.2 there was no significant difference between pHin and pHex. These results unequivocally demonstrate the steady state nature of the pH regulation and its dependence upon energization.
Full Text
The Full Text of this article is available as a PDF (682.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey I. A., Williams S. R., Radda G. K., Gadian D. G. Activity of phosphorylase in total global ischaemia in the rat heart. A phosphorus-31 nuclear-magnetic-resonance study. Biochem J. 1981 Apr 15;196(1):171–178. doi: 10.1042/bj1960171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belt J. A., Thomas J. A., Buchsbaum R. N., Racker E. Inhibition of lactate transport and glycolysis in Ehrlich ascites tumor cells by bioflavonoids. Biochemistry. 1979 Aug 7;18(16):3506–3511. doi: 10.1021/bi00583a011. [DOI] [PubMed] [Google Scholar]
- Epel D. Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. Curr Top Dev Biol. 1978;12:185–246. doi: 10.1016/s0070-2153(08)60597-9. [DOI] [PubMed] [Google Scholar]
- Gerson D. F., Burton A. C. The relation of cycling of intracellular pH to mitosis in the acellular slime mould Physarum polycephalum. J Cell Physiol. 1977 May;91(2):297–303. doi: 10.1002/jcp.1040910214. [DOI] [PubMed] [Google Scholar]
- Gonzalez-Mendez R., Wemmer D., Hahn G., Wade-Jardetzky N., Jardetzky O. Continuous-flow NMR culture system for mammalian cells. Biochim Biophys Acta. 1982 Jun 8;720(3):274–280. doi: 10.1016/0167-4889(82)90051-9. [DOI] [PubMed] [Google Scholar]
- Graziani Y. Bioflavonoid regulation of ATPase and hexokinase activity in Ehrlich ascites cell mitochondria. Biochim Biophys Acta. 1977 May 11;460(2):364–373. doi: 10.1016/0005-2728(77)90221-3. [DOI] [PubMed] [Google Scholar]
- Griffiths J. R., Stevens A. N., Iles R. A., Gordon R. E., Shaw D. 31P-NMR investigation of solid tumours in the living rat. Biosci Rep. 1981 Apr;1(4):319–325. doi: 10.1007/BF01114871. [DOI] [PubMed] [Google Scholar]
- Gupta R. K., Yushok W. D. Noninvasive 31P NMR probes of free Mg2+, MgATP, and MgADP in intact Ehrlich ascites tumor cells. Proc Natl Acad Sci U S A. 1980 May;77(5):2487–2491. doi: 10.1073/pnas.77.5.2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinz A., Sachs G., Schafer J. A. Evidence for activation of an active electrogenic proton pump in Ehrlich ascites tumor cells during glycolysis. J Membr Biol. 1981;61(3):143–153. doi: 10.1007/BF01870520. [DOI] [PubMed] [Google Scholar]
- Navon G., Ogawa S., Shulman R. G., Yamane T. 31P nuclear magnetic resonance studies of Ehrlich ascites tumor cells. Proc Natl Acad Sci U S A. 1977 Jan;74(1):87–91. doi: 10.1073/pnas.74.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols J. W., Deamer D. W. Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2038–2042. doi: 10.1073/pnas.77.4.2038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poole D. T., Butler T. C., Williams M. E. The effects of nigericin, valinomycin, and 2,4-dinitrophenol on intracellular pH, glycolysis, and K + concentration of Ehrlich ascites tumor cells. Biochim Biophys Acta. 1972 May 9;266(2):463–470. doi: 10.1016/0005-2736(72)90102-2. [DOI] [PubMed] [Google Scholar]
- Poole D. T. Intracellular pH of the Ehrlich ascites tumour cell as it is affected by sugars and sugar derivatives. J Biol Chem. 1967 Aug 25;242(16):3731–3736. [PubMed] [Google Scholar]
- Roberts J. K., Wade-Jardetzky N., Jardetzky O. Intracellular pH measurements by 31P nuclear magnetic resonance. Influence of factors other than pH on 31P chemical shifts. Biochemistry. 1981 Sep 15;20(19):5389–5394. doi: 10.1021/bi00522a006. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Shen S. S., Steinhardt R. A. Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature. 1978 Mar 16;272(5650):253–254. doi: 10.1038/272253a0. [DOI] [PubMed] [Google Scholar]
- Slonczewski J. L., Rosen B. P., Alger J. R., Macnab R. M. pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6271–6275. doi: 10.1073/pnas.78.10.6271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spencer T. L., Lehninger A. L. L-lactate transport in Ehrlich ascites-tumour cells. Biochem J. 1976 Feb 15;154(2):405–414. doi: 10.1042/bj1540405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spray D. C., Harris A. L., Bennett M. V. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science. 1981 Feb 13;211(4483):712–715. doi: 10.1126/science.6779379. [DOI] [PubMed] [Google Scholar]
- Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
- Tomoda A., Tsuda-Hirota S., Minakami S. Glycolysis of red cells suspended in solutions of impermeable solutes. Intracellular pH and glycolysis. J Biochem. 1977 Mar;81(3):697–701. doi: 10.1093/oxfordjournals.jbchem.a131506. [DOI] [PubMed] [Google Scholar]
- Van Ventrooij W. J., Henshaw E. C., Hirsch C. A. Nutritional effects on the polyribosome distribution and rate of protein synthesis in Ehrlich ascites tumor cells in culture. J Biol Chem. 1970 Nov 25;245(22):5947–5953. [PubMed] [Google Scholar]
- Vaughan-Jones R. D. Regulation of chloride in quiescent sheep-heart Purkinje fibres studied using intracellular chloride and pH-sensitive micro-electrodes. J Physiol. 1979 Oct;295:111–137. doi: 10.1113/jphysiol.1979.sp012957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yushok W. D., Gupta R. K. Phosphocreatine in Ehrlich ascites tumor cells detected by noninvasive 31P NMR spectroscopy. Biochem Biophys Res Commun. 1980 Jul 16;95(1):73–81. doi: 10.1016/0006-291x(80)90706-8. [DOI] [PubMed] [Google Scholar]
- den Hollander J. A., Ugurbil K., Brown T. R., Shulman R. G. Phosphorus-31 nuclear magnetic resonance studies of the effect of oxygen upon glycolysis in yeast. Biochemistry. 1981 Sep 29;20(20):5871–5880. doi: 10.1021/bi00523a034. [DOI] [PubMed] [Google Scholar]