Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Oct 1;95(1):29–40. doi: 10.1083/jcb.95.1.29

Dexamethasone increases the synthesis and secretion of a partially active fibronectin in rat hepatoma cells

PMCID: PMC2112371  PMID: 7142289

Abstract

After treatment with dexamethasone, rat hepatoma-tissue culture cells show a markedly enhanced adhesion to the substratum and increased cell- to-cell interaction. In addition, there is a profound change in the production of secretory glycoproteins. Although the relative synthesis and secretion of a gelatin-binding, fibronectinlike glycoprotein is increased threefold, we do not think this protein is responsible for the improved adhesion properties of the cells because the hepatoma cells do not bind normal fibronectin and because the HTC-produced fibronectin is neither bound by fibroblasts nor has it any affinity for ganglioside-containing phospholipid vesicles. Therefore, these hepatoma cells represent a unique system for studying the regulation of fibronectin synthesis by glucocorticoids. Furthermore, analyses of primary fetal rat hepatocytes have shown that these cells, unlike normal adult hepatocytes, synthesize and secrete fibronectin, which is structurally related to the HTC-cell protein. The comparison of this protein with fibronectin from normal cells will allow a structural characterization of the functional defect in the fibronectin synthesized by transformed cells.

Full Text

The Full Text of this article is available as a PDF (5.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arneson M. A., Hammerschmidt D. E., Furcht L. T., King R. A. A new form of Ehlers-Danlos syndrome. Fibronectin corrects defective platelet function. JAMA. 1980 Jul 11;244(2):144–147. [PubMed] [Google Scholar]
  2. Ballard P. L., Tomkins G. M. Hormone induced modification of the cell surface. Nature. 1969 Oct 25;224(5217):344–345. doi: 10.1038/224344a0. [DOI] [PubMed] [Google Scholar]
  3. Baumann H., Doyle D. Effect of trypsin on the cell surface proteins of hepatoma tissue culture cells. Characterization of a carbohydrate-rich glycopeptide released from a calcium binding membrane glycoprotein. J Biol Chem. 1979 May 25;254(10):3935–3946. [PubMed] [Google Scholar]
  4. Baumann H., Doyle D. Localization of membrane glycoproteins by in situ neuraminidase treatment of rat hepatoma tissue culture cells and two-dimensional gel electrophoretic analysis of the modified proteins. J Biol Chem. 1979 Apr 10;254(7):2542–2550. [PubMed] [Google Scholar]
  5. Baumann H., Gelehrter T. D., Doyle D. Dexamethasone regulates the program of secretory glycoprotein synthesis in hepatoma tissue culture cells. J Cell Biol. 1980 Apr;85(1):1–8. doi: 10.1083/jcb.85.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baumann H., Held W. A. Biosynthesis and hormone-regulated expression of secretory glycoproteins in rat liver and hepatoma cells. Effect of glucocorticoids and inflammation. J Biol Chem. 1981 Oct 10;256(19):10145–10155. [PubMed] [Google Scholar]
  7. Baumann H., Hou E., Doyle D. Insertion of biologically active membrane proteins from rat liver into the plasma membrane of mouse fibroblasts. J Biol Chem. 1980 Oct 25;255(20):10001–10012. [PubMed] [Google Scholar]
  8. Baumann H., Nudelman E., Watanabe K., Hakomori S. Neutral fucolipids and fucogangliosides of rat hepatoma HTC and H35 cells, rat liver, and hepatocytes. Cancer Res. 1979 Jul;39(7 Pt 1):2637–2643. [PubMed] [Google Scholar]
  9. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  10. Chandrasekhar S., Millis A. J. Fibronectin from aged fibroblasts is defective in promoting cellular adhesion. J Cell Physiol. 1980 Apr;103(1):47–54. doi: 10.1002/jcp.1041030108. [DOI] [PubMed] [Google Scholar]
  11. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  12. Dickey W. D., Seals C. M. Collagen cell attachment protein from rat hepatoma cells. Cancer Res. 1981 Oct;41(10):4027–4030. [PubMed] [Google Scholar]
  13. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  14. Fredin B. L., Seifert S. C., Gelehrter T. D. Dexamethasone-induced adhesion in hepatoma cells: the role of plasminogen activator. Nature. 1979 Jan 25;277(5694):312–313. doi: 10.1038/277312a0. [DOI] [PubMed] [Google Scholar]
  15. Furcht L. T., Mosher D. F., Wendelschafer-Crabb G., Woodbridge P. A., Foidart J. M. Dexamethasone-induced accumulation of a fibronectin and collagen extracellular matrix in transformed human cells. Nature. 1979 Feb 1;277(5695):393–395. doi: 10.1038/277393a0. [DOI] [PubMed] [Google Scholar]
  16. Gahmberg C. G., Hakomori S. I. Altered growth behavior of malignant cells associated with changes in externally labeled glycoprotein and glycolipid. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3329–3333. doi: 10.1073/pnas.70.12.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gelehrter T. D. Glucocorticoids and the plasma membrane. Monogr Endocrinol. 1979;12:561–574. doi: 10.1007/978-3-642-81265-1_30. [DOI] [PubMed] [Google Scholar]
  18. Guguen-Guillouzo C., Tichonicky L., Szajnert M. F., Kruh J. Changes in some chromatin and cytoplasmic enzymes of perinatal rat hepatocytes during culture. In Vitro. 1980 Jan;16(1):1–10. doi: 10.1007/BF02618193. [DOI] [PubMed] [Google Scholar]
  19. Hahn E., Wick G., Pencev D., Timpl R. Distribution of basement membrane proteins in normal and fibrotic human liver: collagen type IV, laminin, and fibronectin. Gut. 1980 Jan;21(1):63–71. doi: 10.1136/gut.21.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hayashi M., Yamada K. M. Differences in domain structures between plasma and cellular fibronectins. J Biol Chem. 1981 Nov 10;256(21):11292–11300. [PubMed] [Google Scholar]
  21. Johansson S., Kjellén L., Hök M., Timpl R. Substrate adhesion of rat hepatocytes: a comparison of laminin and fibronectin as attachment proteins. J Cell Biol. 1981 Jul;90(1):260–264. doi: 10.1083/jcb.90.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Keski-Oja J., Sen A., Todaro G. J. Direct association of fibronectin and actin molecules in vitro. J Cell Biol. 1980 Jun;85(3):527–533. doi: 10.1083/jcb.85.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kleinman H. K., Hewitt A. T., Murray J. C., Liotta L. A., Rennard S. I., Pennypacker J. P., McGoodwin E. B., Martin G. R., Fishman P. H. Cellular and metabolic specificity in the interaction of adhesion proteins with collagen and with cells. J Supramol Struct. 1979;11(1):69–78. doi: 10.1002/jss.400110108. [DOI] [PubMed] [Google Scholar]
  24. Kleinman H. K., Klebe R. J., Martin G. R. Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol. 1981 Mar;88(3):473–485. doi: 10.1083/jcb.88.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kleinman H. K., Martin G. R., Fishman P. H. Ganglioside inhibition of fibronectin-mediated cell adhesion to collagen. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3367–3371. doi: 10.1073/pnas.76.7.3367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Marceau N., Goyette R., Valet J. P., Deschenes J. The effect of dexamethasone on formation of a fibronectin extracellular matrix by rat hepatocytes in vitro. Exp Cell Res. 1980 Feb;125(2):497–502. doi: 10.1016/0014-4827(80)90146-9. [DOI] [PubMed] [Google Scholar]
  28. March S. C., Parikh I., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem. 1974 Jul;60(1):149–152. doi: 10.1016/0003-2697(74)90139-0. [DOI] [PubMed] [Google Scholar]
  29. Martin G. R., Kleinman H. K. Extracellular matrix proteins give new life to cell culture. Hepatology. 1981 May-Jun;1(3):264–266. doi: 10.1002/hep.1840010312. [DOI] [PubMed] [Google Scholar]
  30. Olden K., Pratt R. M., Yamada K. M. Role of carbohydrate in biological function of the adhesive glycoprotein fibronectin. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3343–3347. doi: 10.1073/pnas.76.7.3343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Owerbach D., Doyle D., Shows T. B. Genetics of the large, external, transformation-sensitive (LETS) protein: assignment of a gene coding for expression of LETS to human chromosome 8. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5640–5644. doi: 10.1073/pnas.75.11.5640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rauvala H., Carter W. G., Hakomori S. I. Studies on cell adhesion and recognition. I. Extent and specificity of cell adhesion triggered by carbohydrate-reactive proteins (glycosidases and lectins) and by fibronectin. J Cell Biol. 1981 Jan;88(1):127–137. doi: 10.1083/jcb.88.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rojkind M., Gatmaitan Z., Mackensen S., Giambrone M. A., Ponce P., Reid L. M. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J Cell Biol. 1980 Oct;87(1):255–263. doi: 10.1083/jcb.87.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rubin K., Hök M., Obrink B., Timpl R. Substrate adhesion of rat hepatocytes: mechanism of attachment to collagen substrates. Cell. 1981 May;24(2):463–470. doi: 10.1016/0092-8674(81)90337-8. [DOI] [PubMed] [Google Scholar]
  35. Saito T., Hakomori S. I. Quantitative isolation of total glycosphingolipids from animal cells. J Lipid Res. 1971 Mar;12(2):257–259. [PubMed] [Google Scholar]
  36. Sekiguchi K., Fukuda M., Hakomori S. Domain structure of hamster plasma fibronectin. Isolation and characterization of four functionally distinct domains and their unequal distribution between two subunit polypeptides. J Biol Chem. 1981 Jun 25;256(12):6452–6462. [PubMed] [Google Scholar]
  37. Sekiguchi K., Hakomori S. Functional domain structure of fibronectin. Proc Natl Acad Sci U S A. 1980 May;77(5):2661–2665. doi: 10.1073/pnas.77.5.2661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sekiguchi K., Hakomori S. Functional domain structure of fibronectin. Proc Natl Acad Sci U S A. 1980 May;77(5):2661–2665. doi: 10.1073/pnas.77.5.2661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Thompson E. B., Tomkins G. M., Curran J. F. Induction of tyrosine alpha-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc Natl Acad Sci U S A. 1966 Jul;56(1):296–303. doi: 10.1073/pnas.56.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Voss B., Allam S., Rauterberg J., Ullrich K., Gieselmann V., von Figura K. Primary cultures of rat hepatocytes synthesize fibronectin. Biochem Biophys Res Commun. 1979 Oct 29;90(4):1348–1354. doi: 10.1016/0006-291x(79)91184-7. [DOI] [PubMed] [Google Scholar]
  41. Wagner D. D., Ivatt R., Destree A. T., Hynes R. O. Similarities and differences between the fibronectins of normal and transformed hamster cells. J Biol Chem. 1981 Nov 25;256(22):11708–11715. [PubMed] [Google Scholar]
  42. Yamada K. M., Kennedy D. W., Kimata K., Pratt R. M. Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments. J Biol Chem. 1980 Jul 10;255(13):6055–6063. [PubMed] [Google Scholar]
  43. Yamada K. M., Weston J. A. The synthesis, turnover, and artificial restoration of a major cell surface glycoprotein. Cell. 1975 May;5(1):75–81. doi: 10.1016/0092-8674(75)90094-x. [DOI] [PubMed] [Google Scholar]
  44. Zardi L., Siri A., Carnemolla B., Santi L., Gardner W. D., Hoch S. O. Fibronectin: a chromatin-associated protein? Cell. 1979 Nov;18(3):649–657. doi: 10.1016/0092-8674(79)90120-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES