Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1982 Oct 1;95(1):91–104. doi: 10.1083/jcb.95.1.91

Spindle microtubules and their mechanical associations after micromanipulation in anaphase

PMCID: PMC2112378  PMID: 6890559

Abstract

Micromanipulation of living grasshopper spermatocytes in anaphase has been combined with electron microscopy to reveal otherwise obscure features of spindle organization. A chromosome is pushed laterally outside the spindle and stretched, and the cell is fixed with a novel, agar-treated glutaraldehyde solution. Two- and three-dimensional reconstructions from serial sections of seven cells show that kinetochore microtubules of the manipulated chromosome are shifted outside the confusing thicket of spindle microtubules and mechanical associations among microtubules are revealed by bent or shifted microtubules. These are the chief results: (a) The disposition of microtubules invariably is consistent with a skeletal role for spindle microtubules. (b) The kinetochore microtubule bundle is composed of short and long microtubules, with weak but recognizable mechanical associations among them. Some kinetochore microtubules are more tightly linked to one other microtubule within the bundle. (c) Microtubules of the kinetochore microtubule bundle are firmly connected to other spindle microtubules only near the pole, although some nonkinetochore microtubules of uncertain significance enter the bundle nearer to the kinetochore. (d) The kinetochore microtubules of adjacent chromosomes are mechanically linked, which provides an explanation for interdependent chromosome movement in "hinge anaphases." In the region of the spindle open to analysis after chromosome micromanipulation, microtubules may be linked mechanically by embedment in a gel, rather than by dynein or other specific, cross-bridging molecules.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Begg D. A., Ellis G. W. Micromanipulation studies of chromosome movement. II. Birefringent chromosomal fibers and the mechanical attachment of chromosomes to the spindle. J Cell Biol. 1979 Aug;82(2):542–554. doi: 10.1083/jcb.82.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cande W. Z. Nucleotide requirements for anaphase chromosome movements in permeabilized mitotic cells: anaphase B but not anaphase A requires ATP. Cell. 1982 Jan;28(1):15–22. doi: 10.1016/0092-8674(82)90370-1. [DOI] [PubMed] [Google Scholar]
  3. Fuge H. Ultrastructure of the mitotic spindle. Int Rev Cytol Suppl. 1977;(6):1–58. [PubMed] [Google Scholar]
  4. Haimo L. T., Telzer B. R., Rosenbaum J. L. Dynein binds to and crossbridges cytoplasmic microtubules. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5759–5763. doi: 10.1073/pnas.76.11.5759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jensen C. G. Dynamics of spindle microtubule organization: kinetochore fiber microtubules of plant endosperm. J Cell Biol. 1982 Feb;92(2):540–558. doi: 10.1083/jcb.92.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kubai D. F. Unorthodox mitosis in Trichonympha agilis: kinetochore differentiation and chromosome movement. J Cell Sci. 1973 Sep;13(2):511–552. doi: 10.1242/jcs.13.2.511. [DOI] [PubMed] [Google Scholar]
  7. Kubai D. F., Wise D. Nonrandom chromosome segregation in Neocurtilla (Gryllotalpa) hexadactyla: an ultrastructural study. J Cell Biol. 1981 Feb;88(2):281–293. doi: 10.1083/jcb.88.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LaFountain J. R., Jr Analysis of birefringence and ultrastructure of spindles in primary spermatocytes of Nephrotoma suturalis during anaphase. J Ultrastruct Res. 1976 Mar;54(3):333–346. doi: 10.1016/s0022-5320(76)80020-2. [DOI] [PubMed] [Google Scholar]
  9. McDonald K. L., Edwards M. K., McIntosh J. R. Cross-sectional structure of the central mitotic spindle of Diatoma vulgare. Evidence for specific interactions between antiparallel microtubules. J Cell Biol. 1979 Nov;83(2 Pt 1):443–461. doi: 10.1083/jcb.83.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McIntosh J. R., McDonald K. L., Edwards M. K., Ross B. M. Three-dimensional structure of the central mitotic spindle of Diatoma vulgare. J Cell Biol. 1979 Nov;83(2 Pt 1):428–442. doi: 10.1083/jcb.83.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McIntosh J. R., Sisken J. E., Chu L. K. Structural studies on mitotic spindles isolated from cultured human cells. J Ultrastruct Res. 1979 Jan;66(1):40–52. doi: 10.1016/s0022-5320(79)80064-7. [DOI] [PubMed] [Google Scholar]
  12. Moens P. B., Moens T. Computer measurements and graphics of three-dimensional cellular ultrastructure. J Ultrastruct Res. 1981 May;75(2):131–141. doi: 10.1016/s0022-5320(81)80129-3. [DOI] [PubMed] [Google Scholar]
  13. Moore M. J. Removal of glass coverslips from cultures flat embedded in epoxy resins using hydrofluoric acid. J Microsc. 1975 Jul;104(2):205–207. doi: 10.1111/j.1365-2818.1975.tb04018.x. [DOI] [PubMed] [Google Scholar]
  14. Nicklas R. B., Brinkley B. R., Pepper D. A., Kubai D. F., Rickards G. K. Electron microscopy of spermatocytes previously studied in life: methods and some observations on micromanipulated chromosomes. J Cell Sci. 1979 Feb;35:87–104. doi: 10.1242/jcs.35.1.87. [DOI] [PubMed] [Google Scholar]
  15. Nicklas R. B., Koch C. A. Chromosome micromanipulation. IV. Polarized motions within the spindle and models for mitosis. Chromosoma. 1972;39(1):1–26. doi: 10.1007/BF00320586. [DOI] [PubMed] [Google Scholar]
  16. Peterson J. B., Ris H. Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. J Cell Sci. 1976 Nov;22(2):219–242. doi: 10.1242/jcs.22.2.219. [DOI] [PubMed] [Google Scholar]
  17. RIS H. The anaphase movement of chromosomes in the spermatocytes of the grasshopper. Biol Bull. 1949 Feb;96(1):90–106. [PubMed] [Google Scholar]
  18. Rieder C. L. The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma. 1981;84(1):145–158. doi: 10.1007/BF00293368. [DOI] [PubMed] [Google Scholar]
  19. Sato H., Ellis G. W., Inoué S. Microtubular origin of mitotic spindle form birefringence. Demonstration of the applicability of Wiener's equation. J Cell Biol. 1975 Dec;67(3):501–517. doi: 10.1083/jcb.67.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Warner F. D. Cation-induced attachment of ciliary dynein cross-bridges. J Cell Biol. 1978 Jun;77(3):R19–R26. doi: 10.1083/jcb.77.3.r19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Witt P. L., Ris H., Borisy G. G. Structure of kinetochore fibers: microtubule continuity and inter-microtubule bridges. Chromosoma. 1981;83(4):523–540. doi: 10.1007/BF00328277. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES