Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Mar 1;96(3):730–735. doi: 10.1083/jcb.96.3.730

Control of erythrocyte shape by calmodulin

PMCID: PMC2112391  PMID: 6833381

Abstract

Erythrocytes are deformable cells whose shapes can be altered by treatments with a variety of drugs. The forms the erythrocyte may assume vary continuously from the spiny "echinocytes" or crenated cells at one extreme to highly folded and dented "cupped" cells at the other extreme. Examination of 39 compounds for cup-forming activity revealed a remarkable correlation between their ability to form cupped cells and their inhibitory activity against the calcium regulatory protein, calmodulin. Calmodulin is known to interact with several erythrocyte proteins including spectrin, spectrin kinase, and the Ca++ ATPase calcium pump of the membrane. These proteins regulate the form of the cytoskeleton as well as intracellular calcium and ATP levels. It is proposed that calmodulin is required to maintain normal erythrocyte morphology and that in the presence of calmodulin inhibitors, the cell assumes a cupped shape.

Full Text

The Full Text of this article is available as a PDF (712.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Tyler J. M. State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes. J Biol Chem. 1980 Feb 25;255(4):1259–1265. [PubMed] [Google Scholar]
  2. Anderson R. A., Lovrien R. E. Erythrocyte membrane sidedness in lectin control of the Ca2+-A23187-mediated diskocyte goes to and comes from echinocyte conversion. Nature. 1981 Jul 9;292(5819):158–161. doi: 10.1038/292158a0. [DOI] [PubMed] [Google Scholar]
  3. Birchmeier W., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J Cell Biol. 1977 Jun;73(3):647–659. doi: 10.1083/jcb.73.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
  5. Connor C. G., Brady R. C., Brownstein B. L. Trifluoperazine inhibits spreading and migration of cells in culture. J Cell Physiol. 1981 Sep;108(3):299–307. doi: 10.1002/jcp.1041080303. [DOI] [PubMed] [Google Scholar]
  6. Conrad M. J., Singer S. J. The solubility of amphipathic molecules in biological membranes and lipid bilayers and its implications for membrane structure. Biochemistry. 1981 Feb 17;20(4):808–818. doi: 10.1021/bi00507a024. [DOI] [PubMed] [Google Scholar]
  7. Deuticke B. Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim Biophys Acta. 1968 Dec 10;163(4):494–500. doi: 10.1016/0005-2736(68)90078-3. [DOI] [PubMed] [Google Scholar]
  8. Feo C., Mohandas N. Clarification of role of ATP in red-cell morphology and function. Nature. 1977 Jan 13;265(5590):166–168. doi: 10.1038/265166a0. [DOI] [PubMed] [Google Scholar]
  9. Franks N. P., Lieb W. R. Is membrane expansion relevant to anaesthesia? Nature. 1981 Jul 16;292(5820):248–251. doi: 10.1038/292248a0. [DOI] [PubMed] [Google Scholar]
  10. Frazier D. T., Narahashi T., Yamada M. The site of action and active form of local anesthetics. II. Experiments with quaternary compounds. J Pharmacol Exp Ther. 1970 Jan;171(1):45–51. [PubMed] [Google Scholar]
  11. Gietzen K., Wüthrich A., Bader H. R 24571: a new powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated functions. Biochem Biophys Res Commun. 1981 Jul 30;101(2):418–425. doi: 10.1016/0006-291x(81)91276-6. [DOI] [PubMed] [Google Scholar]
  12. Hidaka H., Sasaki Y., Tanaka T., Endo T., Ohno S., Fujii Y., Nagata T. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4354–4357. doi: 10.1073/pnas.78.7.4354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kanamori M., Naka M., Asano M., Hidaka H. Effects of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and other calmodulin antagonists (calmodulin interacting agents) on calcium-induced contraction of rabbit aortic strips. J Pharmacol Exp Ther. 1981 May;217(2):494–499. [PubMed] [Google Scholar]
  14. Kao K. J., Sommer J. R., Pizzo S. V. Modulation of platelet shape and membrane receptor binding by Ca2+-calmodulin complex. Nature. 1981 Jul 2;292(5818):82–84. doi: 10.1038/292082a0. [DOI] [PubMed] [Google Scholar]
  15. Landry Y., Amellal M., Ruckstuhl M. Can calmodulin inhibitors be used to probe calmodulin effects? Biochem Pharmacol. 1981 Jul 15;30(14):2031–2032. doi: 10.1016/0006-2952(81)90217-3. [DOI] [PubMed] [Google Scholar]
  16. Levin R. M., Weiss B. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol. 1977 Jul;13(4):690–697. [PubMed] [Google Scholar]
  17. Levin R. M., Weiss B. Mechanism by which psychotropic drugs inhibit adenosine cyclic 3',5'-monophosphate phosphodiesterase of brain. Mol Pharmacol. 1976 Jul;12(4):581–589. [PubMed] [Google Scholar]
  18. Narahashi T., Frazier T., Yamada M. The site of action and active form of local anesthetics. I. Theory and pH experiments with tertiary compounds. J Pharmacol Exp Ther. 1970 Jan;171(1):32–44. [PubMed] [Google Scholar]
  19. Niggli V., Ronner P., Carafoli E., Penniston J. T. Effects of calmodulin on the (Ca2+ + Mg2+)ATPase partially purified from erythrocyte membranes. Arch Biochem Biophys. 1979 Nov;198(1):124–130. doi: 10.1016/0003-9861(79)90402-8. [DOI] [PubMed] [Google Scholar]
  20. Nishikawa M., Tanaka T., Hidaka H. Ca2+-calmodulin-dependent phosphorylation and platelet secretion. Nature. 1980 Oct 30;287(5785):863–865. doi: 10.1038/287863a0. [DOI] [PubMed] [Google Scholar]
  21. Palek J., Liu P. A., Liu S. C. Polymerisation of red cell membrane protein contributes to spheroechinocyte shape irreversibility. Nature. 1978 Aug 3;274(5670):505–507. doi: 10.1038/274505a0. [DOI] [PubMed] [Google Scholar]
  22. Patel V. P., Fairbanks G. Spectrin phosphorylation and shape change of human erythrocyte ghosts. J Cell Biol. 1981 Feb;88(2):430–440. doi: 10.1083/jcb.88.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pinder J. C., Bray D., Gratzer W. B. Control of interaction of spectrin and actin by phosphorylation. Nature. 1977 Dec 22;270(5639):752–754. doi: 10.1038/270752a0. [DOI] [PubMed] [Google Scholar]
  24. Poste G., Papahadjopoulos D., Nicolson G. L. Local anesthetics affect transmembrane cytoskeletal control of mobility and distribution of cell surface receptors. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4430–4434. doi: 10.1073/pnas.72.11.4430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roufogalis B. D. Phenothiazine antagonism of calmodulin: a structurally-nonspecific interaction. Biochem Biophys Res Commun. 1981 Feb 12;98(3):607–613. doi: 10.1016/0006-291x(81)91157-8. [DOI] [PubMed] [Google Scholar]
  26. Ryan G. B., Unanue E. R., Karnovsky M. J. Inhibition of surface capping of macromolecules by local anaesthetics and tranquillisers. Nature. 1974 Jul 5;250(461):56–57. doi: 10.1038/250056a0. [DOI] [PubMed] [Google Scholar]
  27. Salisbury J. L., Condeelis J. S., Maihle N. J., Satir P. Calmodulin localization during capping and receptor-mediated endocytosis. Nature. 1981 Nov 12;294(5837):163–166. doi: 10.1038/294163a0. [DOI] [PubMed] [Google Scholar]
  28. Schulman H., Greengard P. Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by "calcium-dependent regulator". Proc Natl Acad Sci U S A. 1978 Nov;75(11):5432–5436. doi: 10.1073/pnas.75.11.5432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  30. Sheetz M. P., Painter R. G., Singer S. J. Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes. J Cell Biol. 1976 Jul;70(1):193–203. doi: 10.1083/jcb.70.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sobue K., Muramoto Y., Fujita M., Kakiuchi S. Calmodulin-binding protein of erythrocyte cytoskeleton. Biochem Biophys Res Commun. 1981 Jun 16;100(3):1063–1070. doi: 10.1016/0006-291x(81)91931-8. [DOI] [PubMed] [Google Scholar]
  33. Tanaka T., Hidaka H. Interaction of local anesthetics with calmodulin. Biochem Biophys Res Commun. 1981 Jul 30;101(2):447–453. doi: 10.1016/0006-291x(81)91280-8. [DOI] [PubMed] [Google Scholar]
  34. Volpi M., Sha'afi R. I., Epstein P. M., Andrenyak D. M., Feinstein M. B. Local anesthetics, mepacrine, and propranolol are antagonists of calmodulin. Proc Natl Acad Sci U S A. 1981 Feb;78(2):795–799. doi: 10.1073/pnas.78.2.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Watanabe K., Williams E. F., Law J. S., West W. L. Effects of vinca alkaloids on calcium-calmodulin regulated cyclic adenosine 3' ,5'-monophosphatase phosphodiesterase activity from brain. Biochem Pharmacol. 1981 Feb 15;30(4):335–340. doi: 10.1016/0006-2952(81)90063-0. [DOI] [PubMed] [Google Scholar]
  36. Weiss B., Prozialeck W., Cimino M., Barnette M. S., Wallace T. L. Pharmacological regulation of calmodulin. Ann N Y Acad Sci. 1980;356:319–345. doi: 10.1111/j.1749-6632.1980.tb29621.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES