Abstract
The significance of discontinuities frequently found in freeze-fracture replicas of the tight junction was evaluated using complementary replicas of hepatocyte junctions from control and bile duct-ligated rats. An extensive analysis of complementary replicas using rotary platinum shadowing indicates that discontinuities in the protoplasmic (P) fracture face do not represent structural breaks in the tight- junctional network. In no case did P-face discontinuities correspond with interruptions in the groove network on the complementary extracellular (E) face. Quantitative analysis of replicas shows that P- face discontinuities result in part from "transfer" of material to the complementary E face (approximately 7% of the junctional length). However, many P-face discontinuities (7-30% of the junctional length) are matched only by a groove on the complementary E face. This finding demonstrates that a significant amount of material can be lost during freeze-fracture. An analysis of junctions from bile duct-ligated rats, which are known to have an increased paracellular permeability, shows comparable transfer and loss of material. However, the number of junctional elements and the tight-junction network density was significantly reduced by bile duct ligation. These observations indicate that discontinuities in tight-junctional elements result during the preparation of freeze-fracture replicas and are not physiologically important features of the junctional barrier. Variation in the number of elements provides the best explanation for observed differences in tight-junction permeability.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARBER-RILEY G. RAT BILIARY TREE DURING SHORT PERIODS OF OBSTRUCTION OF COMMON DUCT. Am J Physiol. 1963 Dec;205:1127–1131. doi: 10.1152/ajplegacy.1963.205.6.1127. [DOI] [PubMed] [Google Scholar]
- Boulpaep E. L., Seely J. F. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am J Physiol. 1971 Oct;221(4):1084–1096. doi: 10.1152/ajplegacy.1971.221.4.1084. [DOI] [PubMed] [Google Scholar]
- Cereijido M., Stefani E., Palomo A. M. Occluding junctions in a cultured transporting epithelium: structural and functional heterogeneity. J Membr Biol. 1980 Mar 31;53(1):19–32. doi: 10.1007/BF01871169. [DOI] [PubMed] [Google Scholar]
- Claude P., Goodenough D. A. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol. 1973 Aug;58(2):390–400. doi: 10.1083/jcb.58.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol. 1978 Mar 10;39(2-3):219–232. doi: 10.1007/BF01870332. [DOI] [PubMed] [Google Scholar]
- De Vos R., Desmet V. J. Morphologic changes of the junctional complex of the hepatocytes in rat liver after bile duct ligation. Br J Exp Pathol. 1978 Apr;59(2):220–227. [PMC free article] [PubMed] [Google Scholar]
- Elias E., Hruban Z., Wade J. B., Boyer J. L. Phalloidin-induced cholestasis: a microfilament-mediated change in junctional complex permeability. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2229–2233. doi: 10.1073/pnas.77.4.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARQUHAR M. G., PALADE G. E. Junctional complexes in various epithelia. J Cell Biol. 1963 May;17:375–412. doi: 10.1083/jcb.17.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972 Jan 5;235(53):9–13. doi: 10.1038/newbio235009a0. [DOI] [PubMed] [Google Scholar]
- Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hull B. E., Staehelin L. A. Functional significance of the variations in the geometrical organization of tight junction networks. J Cell Biol. 1976 Mar;68(3):688–704. doi: 10.1083/jcb.68.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kachar B., Reese T. S. Evidence for the lipidic nature of tight junction strands. Nature. 1982 Apr 1;296(5856):464–466. doi: 10.1038/296464a0. [DOI] [PubMed] [Google Scholar]
- Lagarde S., Elias E., Wade J. B., Boyer J. L. Structural heterogeneity of hepatocyte "tight" junctions: a quantitative analysis. Hepatology. 1981 May-Jun;1(3):193–203. doi: 10.1002/hep.1840010302. [DOI] [PubMed] [Google Scholar]
- MILLER F. Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney. J Biophys Biochem Cytol. 1960 Dec;8:689–718. doi: 10.1083/jcb.8.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margaritis L. H., Elgsaeter A., Branton D. Rotary replication for freeze-etching. J Cell Biol. 1977 Jan;72(1):47–56. doi: 10.1083/jcb.72.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martínez-Palomo A., Erlij D. Structure of tight junctions in epithelia with different permeability. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4487–4491. doi: 10.1073/pnas.72.11.4487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metz J., Aoki A., Merlo M., Forssmann W. G. Morphological alterations and functional changes of interhepatocellular junctions induced by bile duct ligation. Cell Tissue Res. 1977 Aug 26;182(3):299–310. doi: 10.1007/BF00219766. [DOI] [PubMed] [Google Scholar]
- Metz J., Bressler D. Reformation of gap and tight junctions in regenerating liver after cholestasis. Cell Tissue Res. 1979 Jun 27;199(2):257–270. doi: 10.1007/BF00236137. [DOI] [PubMed] [Google Scholar]
- Metz J., Merlo M., Billich H., Forssmann W. G. Exocrine pancreas under experimental conditions. IV. Alterations of intercellular junctions between acinar cells following pancreatic duct ligation. Cell Tissue Res. 1978 Jan 17;186(2):227–240. doi: 10.1007/BF00225533. [DOI] [PubMed] [Google Scholar]
- Møllgård K., Lauritzen B., Saunders N. R. Double replica technique applied to choroid plexus from early foetal sheep: completeness and complexity of tight junctions. J Neurocytol. 1979 Apr;8(2):139–149. doi: 10.1007/BF01175557. [DOI] [PubMed] [Google Scholar]
- Møllgård K., Milinowska D. H., Saunders N. R. Lack of correlation between tight junction morphology and permeability properties in developing choroid plexus. Nature. 1976 Nov 18;264(5583):293–294. doi: 10.1038/264293a0. [DOI] [PubMed] [Google Scholar]
- Pricam C., Humbert F., Perrelet A., Orci L. A freeze-etch study of the tight junctions of the rat kidney tubules. Lab Invest. 1974 Mar;30(3):286–291. [PubMed] [Google Scholar]
- Schneeberger E. E., Walters D. V., Olver R. E. Development of intercellular junctions in the pulmonary epithelium of the foetal lamb. J Cell Sci. 1978 Aug;32:307–324. doi: 10.1242/jcs.32.1.307. [DOI] [PubMed] [Google Scholar]
- Sleytr U. B., Robards A. W. Plastic deformation during freeze-cleavage: a review. J Microsc. 1977 May;110(1):1–25. doi: 10.1111/j.1365-2818.1977.tb00009.x. [DOI] [PubMed] [Google Scholar]
- Staehelin L. A. Further observations on the fine structure of freeze-cleaved tight junctions. J Cell Sci. 1973 Nov;13(3):763–786. doi: 10.1242/jcs.13.3.763. [DOI] [PubMed] [Google Scholar]
- Wade J. B., Karnovsky M. J. Fracture faces of osmotically disrupted zonulae occludentes. J Cell Biol. 1974 Aug;62(2):344–350. doi: 10.1083/jcb.62.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wade J. B., Karnovsky M. J. The structure of the zonula occludens. A single fibril model based on freeze-fracture. J Cell Biol. 1974 Jan;60(1):168–180. doi: 10.1083/jcb.60.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Deurs B., Koehler J. K. Tight junctions in the choroid plexus epithelium. A freeze-fracture study including complementary replicas. J Cell Biol. 1979 Mar;80(3):662–673. doi: 10.1083/jcb.80.3.662. [DOI] [PMC free article] [PubMed] [Google Scholar]