Abstract
Analysis of membrane potential recordings upon microelectrode impalement of four types of macrophages (cell lines P388D1 and PU5-1.8, cultured mouse peritoneal macrophages, and cultured human monocytes) reveals that these cells have membrane potentials at least two times more negative than sustained potential values (E(s)) frequently reported. Upon microelectrode entry into the cell (P388D1), the recorded potential drops to a peak value (E(p)) (mean -37 mV for 50 cells, range -15 to -70 mV) within 2 ms, after which it decays to a depolarized potential (E(n)) (mean -12 mV) in about 20 ms. Thereafter, the membrane develops one or a series of slow hyperpolarizations before a final sustained membrane potential (E(s)) (mean -14 mV, range -5 to -40) is established. The mean value of the peak of the first hyperpolarization (E(h)) is -30 mV (range -10 to -55 mV). The initial fast peak transient, measured upon microelectrode entry, was first described and analyzed by Lassen et al. (Lassen, U.V., A.M. T. Nielson, L. Pape, and L. O. Simonsen, 1971, J. Membr. Biol. 6:269-288 for other change in the membrane potential from its real value before impalement to a sustained depolarized value. This was shown to be true for macrophages by two-electrode impalements of single cells. Values of E(p), E(n), E(h), E(s), and membrane resistance (R(m)) measured for the other macrophages were similar to those of P388D1. From these results we conclude that E(p) is a better estimate of the true membrane potential of macrophages than E(s), and that the slow hyperpolarizations upon impalement should be regarded as transient repolarizations back to the original membrane potentials. Thus, analysis of the initial fast impalement transient can be a valuable aid in the estimation of the membrane potential of various sorts of small isolated cells by microelectrodes.
Full Text
The Full Text of this article is available as a PDF (598.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chambers E. L., de Armendi J. Membrane potential, action potential and activation potential of eggs of the sea urchin, Lytechinus variegatus. Exp Cell Res. 1979 Aug;122(1):203–218. doi: 10.1016/0014-4827(79)90575-5. [DOI] [PubMed] [Google Scholar]
- Dos Reis G. A., Oliveira-Castro G. M. Electrophysiology of phagocytic membranes. I. Potassium-dependent slow membrane hyperpolarizations in mice macrophages. Biochim Biophys Acta. 1977 Sep 19;469(3):257–263. doi: 10.1016/0005-2736(77)90161-4. [DOI] [PubMed] [Google Scholar]
- Dos Reis G. A., Persechini P. M., Ribeiro J. M., Oliveira-Castro G. M. Electrophysiology of phagocytic membranes. II. Membrane potential and induction of slow hyperpolarizations in activated macrophages. Biochim Biophys Acta. 1979 Apr 4;552(2):331–340. doi: 10.1016/0005-2736(79)90287-6. [DOI] [PubMed] [Google Scholar]
- Gallin E. K., Gallin J. I. Interaction of chemotactic factors with human macrophages. Induction of transmembrane potential changes. J Cell Biol. 1977 Oct;75(1):277–289. doi: 10.1083/jcb.75.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallin E. K., Livengood D. R. Nonlinear current-voltage relationships in cultured macrophages. J Cell Biol. 1980 Apr;85(1):160–165. doi: 10.1083/jcb.85.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallin E. K. Voltage clamp studies in macrophages from mouse spleen cultures. Science. 1981 Oct 23;214(4519):458–460. doi: 10.1126/science.7291986. [DOI] [PubMed] [Google Scholar]
- Gallin E. K., Wiederhold M. L., Lipsky P. E., Rosenthal A. S. Spontaneous and induced membrane hyperpolarizations in macrophages. J Cell Physiol. 1975 Dec;86 (Suppl 2)(3 Pt 2):653–661. doi: 10.1002/jcp.1040860510. [DOI] [PubMed] [Google Scholar]
- Gormley I. P., Wright M. O. Electrophysiological changes induced by asbestos in macrophage-like cells during long-term culture. IARC Sci Publ. 1980;(30):435–439. [PubMed] [Google Scholar]
- Gormley I. P., Wright M. O., Ottery J. The effect of toxic particles on the electrophysiology of macrophage. Ann Occup Hyg. 1978 Aug;21(2):141–149. doi: 10.1093/annhyg/21.2.141. [DOI] [PubMed] [Google Scholar]
- Henkart M. P., Nelson P. G. Evidence for an intracellular calcium store releasable by surface stimuli ifibroblasts (L cells). J Gen Physiol. 1979 May;73(5):655–673. doi: 10.1085/jgp.73.5.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koren H. S., Handwerger B. S., Wunderlich J. R. Identification of macrophage-like characteristics in a cultured murine tumor line. J Immunol. 1975 Feb;114(2 Pt 2):894–897. [PubMed] [Google Scholar]
- Kouri J., Noa M., Diaz B., Niubo E. Hyperpolarisation of rat peritoneal macrophages phagocytosing latex particles. Nature. 1980 Feb 28;283(5750):868–869. doi: 10.1038/283868a0. [DOI] [PubMed] [Google Scholar]
- Lawrence E. Oscillations in cellular reactions. Nature. 1979 Jun 21;279(5715):677–678. doi: 10.1038/279677a0. [DOI] [PubMed] [Google Scholar]
- Leijh P. C., van den Barselaar M. T., van Zwet T. L., Daha M. R., van Furth R. Requirement of extracellular complement and immunoglobulin for intracellular killing of micro-organisms by human monocytes. J Clin Invest. 1979 Apr;63(4):772–784. doi: 10.1172/JCI109362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson P. G., Peacock J., Minna J. An active electrical response in fibroblasts. J Gen Physiol. 1972 Jul;60(1):58–71. doi: 10.1085/jgp.60.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada Y., Roy G., Tsuchiya W., Doida Y., Inouye A. Oscillations of membrane potential in L cells. II. Effect of monovalent ion concentrations and conductance changes associated with oscillations. J Membr Biol. 1977 Aug 4;35(4):337–350. doi: 10.1007/BF01869958. [DOI] [PubMed] [Google Scholar]
- Okada Y., Tsuchiya W., Inouye A. Oscillations of membrane potential in L cells. IV. Role of intracellular Ca2+ in hyperpolarizing excitability. J Membr Biol. 1979 Jun 7;47(4):357–376. doi: 10.1007/BF01869744. [DOI] [PubMed] [Google Scholar]
- Okada Y., Tsuchiya W., Yada T., Yano J., Yawo H. Phagocytic activity and hyperpolarizing responses in L-strain mouse fibroblasts. J Physiol. 1981;313:101–119. doi: 10.1113/jphysiol.1981.sp013653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliveira-Castro G. M., Dos Reis G. A. Electrophysiology of phagocytic membranes. III. Evidence for a calcium-dependent potassium permeability change during slow hyperpolarizations of activated macrophages. Biochim Biophys Acta. 1981 Jan 22;640(2):500–511. doi: 10.1016/0005-2736(81)90474-0. [DOI] [PubMed] [Google Scholar]
- Persechini P. M., Araujo E. G., Oliveira-Castro G. M. Electrophysiology of phagocytic membranes: induction of slow membrane hyperpolarizations in macrophages and macrophage polykaryons by intracellular calcium injection. J Membr Biol. 1981;61(2):81–90. doi: 10.1007/BF02007634. [DOI] [PubMed] [Google Scholar]
- Seligmann B. E., Gallin E. K., Martin D. L., Shain W., Gallin J. I. Interaction of chemotactic factors with human polymorphonuclear leukocytes: studies using a membrane potential-sensitive cyanine dye. J Membr Biol. 1980;52(3):257–272. doi: 10.1007/BF01869194. [DOI] [PubMed] [Google Scholar]
- Snyderman R., Goetzl E. J. Molecular and cellular mechanisms of leukocyte chemotaxis. Science. 1981 Aug 21;213(4510):830–837. doi: 10.1126/science.6266014. [DOI] [PubMed] [Google Scholar]
- van Furth R., Cohn Z. A. The origin and kinetics of mononuclear phagocytes. J Exp Med. 1968 Sep 1;128(3):415–435. doi: 10.1084/jem.128.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]