Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Mar 1;96(3):639–643. doi: 10.1083/jcb.96.3.639

Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture

PMCID: PMC2112413  PMID: 6833375

Abstract

A method is presented for isolating osteoblasts from newborn mouse calvaria without the use of digestive enzymes. The procedure is based on the ability of osteoblasts to migrate from bone onto small glass fragments (Jones, S.J., and A. Boyde, 1977, Cell Tissue Res., 184:179- 193). The isolated cells were cultured for up to 14 d in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum and 50 micrograms/ml of ascorbic acid. 7-d cultures were incubated for 24 h with [3H]proline. High levels of collagen synthesis relative to total protein were found, as measured by collagenase digestion of medium and cell layer proteins. Analysis of pepsin-digested proteins from the same cultures by SDS PAGE showed that type I collagen was predominantly produced with small amounts of type III and V (alpha 1 chains) collagens. Osteoblasts grown in the presence of beta-glycerophosphate were able to initiate mineral deposition in culture. Electron microscopic analysis of the cultures revealed the presence of needle- shaped apatite-like crystals associated with collagen fibrils and vesicles in the extracellular space. Mouse skin fibroblasts cultured under identical conditions failed to initiate mineralization. Electron histochemical studies revealed the presence of alkaline phosphatase activity, associated with osteoblast membranes, matrix vesicles and on or near collagen fibrils. Thus these isolated osteoblasts retained in culture their unique property of initiating mineralization and therefore represent a model of value for studying the mineralization process in vitro.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aubin J. E., Heersche J. N., Merrilees M. J., Sodek J. Isolation of bone cell clones with differences in growth, hormone responses, and extracellular matrix production. J Cell Biol. 1982 Feb;92(2):452–461. doi: 10.1083/jcb.92.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachra B. N. Calcification of connective tissue. Int Rev Connect Tissue Res. 1970;5:165–208. doi: 10.1016/b978-0-12-363705-5.50009-9. [DOI] [PubMed] [Google Scholar]
  3. Bernard G. W., Pease D. C. An electron microscopic study of initial intramembranous osteogenesis. Am J Anat. 1969 Jul;125(3):271–290. doi: 10.1002/aja.1001250303. [DOI] [PubMed] [Google Scholar]
  4. Binderman I., Duksin D., Harell A., Katzir E., Sachs L. Formation of bone tissue in culture from isolated bone cells. J Cell Biol. 1974 May;61(2):427–439. doi: 10.1083/jcb.61.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  6. Dziak R., Brand J. S. Calcium transport in isolated bone cells. I. Bone cell isolation procedures. J Cell Physiol. 1974 Aug;84(1):75–83. doi: 10.1002/jcp.1040840109. [DOI] [PubMed] [Google Scholar]
  7. Epstein E. H., Jr, Munderloh N. H. Isolation and characterization of CNBr peptides of human (alpha 1 (III) )3 collagen and tissue distribution of (alpha 1 (I) )2 alpha 2 and (alpha 1 (III) )3 collagens. J Biol Chem. 1975 Dec 25;250(24):9304–9312. [PubMed] [Google Scholar]
  8. Jones S. J., Boyde A. The migration of osteoblasts. Cell Tissue Res. 1977 Oct 26;184(2):179–193. doi: 10.1007/BF00223067. [DOI] [PubMed] [Google Scholar]
  9. Kadis B., Goodson J. M., Offenbacher S., Bruns J. W., Seibert S. Characterization of osteoblast-like cells from fetal rat calvaria. J Dent Res. 1980 Nov;59(11):2006–2013. doi: 10.1177/00220345800590111901. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  12. Luben R. A., Wong G. L., Cohn D. V. Biochemical characterization with parathormone and calcitonin of isolated bone cells: provisional identification of osteoclasts and osteoblasts. Endocrinology. 1976 Aug;99(2):526–534. doi: 10.1210/endo-99-2-526. [DOI] [PubMed] [Google Scholar]
  13. Marvaso V., Bernard G. W. Initial intramembraneous osteogenesis in vitro. Am J Anat. 1977 Aug;149(4):453–468. doi: 10.1002/aja.1001490403. [DOI] [PubMed] [Google Scholar]
  14. Mayahara H., Hirano H., Saito T., Ogawa K. The new lead citrate method for the ultracytochemical demonstration of activity of non-specific alkaline phosphatase (orthophosphoric monoester phosphohydrolase). Histochemie. 1967;11(1):88–96. doi: 10.1007/BF00326615. [DOI] [PubMed] [Google Scholar]
  15. Nijweide P. J., van Iperen-van Gent A. S., Kawilarang-de Haas E. W., van der Plas A., Wassenaar A. M. Bone formation and calcification by isolated osteoblastlike cells. J Cell Biol. 1982 May;93(2):318–323. doi: 10.1083/jcb.93.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nijweide P. J., van der Plas A., Scherft J. P. Biochemical and histological studies on various bone cell preparations. Calcif Tissue Int. 1981;33(5):529–540. doi: 10.1007/BF02409485. [DOI] [PubMed] [Google Scholar]
  17. Osdoby P., Caplan A. I. A scanning electron microscopic investigation of in vitro osteogenesis. Calcif Tissue Int. 1980;30(1):43–50. doi: 10.1007/BF02408605. [DOI] [PubMed] [Google Scholar]
  18. Osdoby P., Caplan A. I. Osteogenesis in cultures of limb mesenchymal cells. Dev Biol. 1979 Nov;73(1):84–102. doi: 10.1016/0012-1606(79)90140-4. [DOI] [PubMed] [Google Scholar]
  19. PECK W. A., BIRGE S. J., Jr, FEDAK S. A. BONE CELLS: BIOCHEMICAL AND BIOLOGICAL STUDIES AFTER ENZYMATIC ISOLATION. Science. 1964 Dec 11;146(3650):1476–1477. doi: 10.1126/science.146.3650.1476. [DOI] [PubMed] [Google Scholar]
  20. Peck W. A., Burks J. K., Wilkins J., Rodan S. B., Rodan G. A. Evidence for preferential effects of parathyroid hormone, calcitonin and adenosine on bone and periosteum. Endocrinology. 1977 May;100(5):1357–1364. doi: 10.1210/endo-100-5-1357. [DOI] [PubMed] [Google Scholar]
  21. Peterkofsky B., Diegelmann R. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry. 1971 Mar 16;10(6):988–994. doi: 10.1021/bi00782a009. [DOI] [PubMed] [Google Scholar]
  22. Pope F. M., Nicholls A. C., Eggleton C., Narcissi P., Hey E. N., Parkin J. M. Osteogenesis imperfecta (lethal) bones contain types III and V collagens. J Clin Pathol. 1980 Jun;33(6):534–538. doi: 10.1136/jcp.33.6.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Puzas J. E., Vignery A., Rasmussen H. Isolation of specific bone cell types by free-flow electrophoresis. Calcif Tissue Int. 1979 Jul 3;27(3):263–268. doi: 10.1007/BF02441195. [DOI] [PubMed] [Google Scholar]
  24. Rao L. G., Ng B., Brunette D. M., Heersche J. N. Parathyroid hormone- and prostaglandin E1-response in a selected population of bone cells after repeated subculture and storage at -80C. Endocrinology. 1977 May;100(5):1233–1241. doi: 10.1210/endo-100-5-1233. [DOI] [PubMed] [Google Scholar]
  25. Robison R. The Possible Significance of Hexosephosphoric Esters in Ossification. Biochem J. 1923;17(2):286–293. doi: 10.1042/bj0170286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SPARVOLI E., GAY H., KAUFMANN B. P. OPEN-FACE, EPOXY EMBEDDING OF SINGLE CELLS FOR ULTRATHIN SECTIONS. Stain Technol. 1965 Mar;40:83–88. doi: 10.3109/10520296509116384. [DOI] [PubMed] [Google Scholar]
  27. Scott D. M., Kent G. N., Cohn D. V. Collagen synthesis in cultured osteoblast-like cells. Arch Biochem Biophys. 1980 May;201(2):384–391. doi: 10.1016/0003-9861(80)90526-3. [DOI] [PubMed] [Google Scholar]
  28. Simmons D. J., Kent G. N., Jilka R. L., Scott D. M., Fallon M., Cohn D. V. Formation of bone by isolated, cultured osteoblasts in millipore diffusion chambers. Calcif Tissue Int. 1982 May;34(3):291–294. doi: 10.1007/BF02411253. [DOI] [PubMed] [Google Scholar]
  29. Sykes B., Puddle B., Francis M., Smith R. The estimation of two collagens from human dermis by interrupted gel electrophoresis. Biochem Biophys Res Commun. 1976 Oct 18;72(4):1472–1480. doi: 10.1016/s0006-291x(76)80180-5. [DOI] [PubMed] [Google Scholar]
  30. Tenenbaum H. C., Heersche J. N. Differentiation of osteoblasts and formation of mineralized bone in vitro. Calcif Tissue Int. 1982 Jan;34(1):76–79. doi: 10.1007/BF02411212. [DOI] [PubMed] [Google Scholar]
  31. Tenenbaum H. C. Role of organic phosphate in mineralization of bone in vitro. J Dent Res. 1981 Aug;60(SPEC):1586–1589. doi: 10.1177/0022034581060003S0801. [DOI] [PubMed] [Google Scholar]
  32. Wiestner M., Fischer S., Dessau W., Müller P. K. Collagen types synthesized by isolated calvarium cells. Exp Cell Res. 1981 May;133(1):115–125. doi: 10.1016/0014-4827(81)90362-1. [DOI] [PubMed] [Google Scholar]
  33. Williams D. C., Boder G. B., Toomey R. E., Paul D. C., Hillman C. C., Jr, King K. L., Van Frank R. M., Johnston C. C., Jr Mineralization and metabolic response in serially passaged adult rat bone cells. Calcif Tissue Int. 1980;30(3):233–246. doi: 10.1007/BF02408633. [DOI] [PubMed] [Google Scholar]
  34. Wong G. L., Cohn D. V. Target cells in bone for parathormone and calcitonin are different: enrichment for each cell type by sequential digestion of mouse calvaria and selective adhesion to polymeric surfaces. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3167–3171. doi: 10.1073/pnas.72.8.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yagiela J. A., Woodbury D. M. Enzymatic isolation of osteoblasts from fetal rat calvaria. Anat Rec. 1977 Jul;188(3):287–306. doi: 10.1002/ar.1091880303. [DOI] [PubMed] [Google Scholar]
  36. Yoshiki S., Kurahashi Y. A light and electron microscopic study of alkaline phosphatase activity in the early stage of dentinogenesis in the young rat. Arch Oral Biol. 1971 Oct;16(10):1143–1154. doi: 10.1016/0003-9969(71)90043-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES