Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Mar 1;96(3):920–924. doi: 10.1083/jcb.96.3.920

Laminin is produced by early rat astrocytes in primary culture

PMCID: PMC2112419  PMID: 6339524

Abstract

The production of laminin by early rat astrocytes in primary culture was investigated by double immunofluorescence staining for laminin and the glial fibrillary acidic protein (GFAP), a defined astrocyte marker. In early cultures (3 d in vitro; 3 DIV) cytoplasmic laminin was detected in all the GFAP-positive cells which formed the major population (80%) of the nonneuronal cells present in cultures from 20- 21-d embryonic, newborn, or 5-d-old rat brains. Monensin treatment (10 microM, 4 h) resulted in accumulation of laminin in the Golgi region, located using labeled wheat germ agglutinin. Laminin started gradually to disappear from the cells with the time in culture, was absent in star-shaped, apparently mature astrocytes, but remained as pericellular matrix deposits. The disappearance of cellular laminin was dependent on the age of the animal and the time in culture so that it started earlier in cultures from 5-d-old rat brains (5 DIV) and approximately following the in vivo age difference in cultures from newborn (12 DIV) and embryonic (14 DIV) rat brains. Our results indicate that laminin is a protein of early astrocytes and also deposited by them in primary culture, thus suggesting a role for this glycoprotein in the development of the central nervous system.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abney E. R., Bartlett P. P., Raff M. C. Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev Biol. 1981 Apr 30;83(2):301–310. doi: 10.1016/0012-1606(81)90476-0. [DOI] [PubMed] [Google Scholar]
  2. Alitalo K., Kurkinen M., Vaheri A., Krieg T., Timpl R. Extracellular matrix components synthesized by human amniotic epithelial cells in culture. Cell. 1980 Apr;19(4):1053–1062. doi: 10.1016/0092-8674(80)90096-3. [DOI] [PubMed] [Google Scholar]
  3. Alitalo K., Kurkinen M., Vaheri A., Virtanen I., Rohde H., Timpl R. Basal lamina glycoproteins are produced by neuroblastoma cells. Nature. 1980 Oct 2;287(5781):465–466. doi: 10.1038/287465a0. [DOI] [PubMed] [Google Scholar]
  4. Bignami A., Dahl D. Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J Comp Neurol. 1974 Jan 1;153(1):27–38. doi: 10.1002/cne.901530104. [DOI] [PubMed] [Google Scholar]
  5. Bignami A., Dahl D. Differentiation of astrocytes in the cerebellar cortex and the pyramidal tracts of the newborn rat. An immunofluorescence study with antibodies to a protein specific to astrocytes. Brain Res. 1973 Jan 30;49(2):393–402. doi: 10.1016/0006-8993(73)90430-7. [DOI] [PubMed] [Google Scholar]
  6. Carbonetto S. T., Gruver M. M., Turner D. C. Nerve fiber growth on defined hydrogel substrates. Science. 1982 May 21;216(4548):897–899. doi: 10.1126/science.7079743. [DOI] [PubMed] [Google Scholar]
  7. Choi B. H., Lapham L. W. Interactions of neurons and astrocytes during growth and development of human fetal brain in vitro. Exp Mol Pathol. 1976 Feb;24(1):110–125. doi: 10.1016/0014-4800(76)90062-9. [DOI] [PubMed] [Google Scholar]
  8. Dahl D., Bignami A. Glial fibrillary acidic protein from normal human brain. Purification and properties. Brain Res. 1973 Jul 27;57(2):343–360. doi: 10.1016/0006-8993(73)90141-8. [DOI] [PubMed] [Google Scholar]
  9. Dahl D., Bignami A. Preparation of antisera to neurofilament protein from chicken brain and human sciatic nerve. J Comp Neurol. 1977 Dec 15;176(4):645–657. doi: 10.1002/cne.901760412. [DOI] [PubMed] [Google Scholar]
  10. Dahl D. Isolation of neurofilament proteins and of immunologically active neurofilament degradation products from extracts of brain, spinal cord and sciatic nerve. Biochim Biophys Acta. 1981 Apr 28;668(2):299–306. doi: 10.1016/0005-2795(81)90037-4. [DOI] [PubMed] [Google Scholar]
  11. Ekblom P., Alitalo K., Vaheri A., Timpl R., Saxén L. Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in morphogenesis. Proc Natl Acad Sci U S A. 1980 Jan;77(1):485–489. doi: 10.1073/pnas.77.1.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
  13. Foidart J. M., Bere E. W., Jr, Yaar M., Rennard S. I., Gullino M., Martin G. R., Katz S. I. Distribution and immunoelectron microscopic localization of laminin, a noncollagenous basement membrane glycoprotein. Lab Invest. 1980 Mar;42(3):336–342. [PubMed] [Google Scholar]
  14. Goridis C., Hirsch M., Dossetto M., Baechler E. Identification and characterisation of two surface glycoproteins on cultured cerebellar cells. Brain Res. 1980 Jan 27;182(2):397–414. doi: 10.1016/0006-8993(80)91197-x. [DOI] [PubMed] [Google Scholar]
  15. Hedman K., Vaheri A., Wartiovaara J. External fibronectin of cultured human fibroblasts is predominantly a matrix protein. J Cell Biol. 1978 Mar;76(3):748–760. doi: 10.1083/jcb.76.3.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hemmendinger L. M., Garber B. B., Hoffmann P. C., Heller A. Target neuron-specific process formation by embryonic mesencephalic dopamine neurons in vitro. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1264–1268. doi: 10.1073/pnas.78.2.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herndon R. M., Seil F. J., Seidman C. Synaptogenesis in mouse cerebellum: a comparative in vivo and tissue culture study. Neuroscience. 1981;6(12):2587–2598. doi: 10.1016/0306-4522(81)90104-4. [DOI] [PubMed] [Google Scholar]
  18. Jones T. R., Ruoslahti E., Schold S. C., Bigner D. D. Fibronectin and glial fibrillary acidic protein expression in normal human brain and anaplastic human gliomas. Cancer Res. 1982 Jan;42(1):168–177. [PubMed] [Google Scholar]
  19. Letourneau P. C. Possible roles for cell-to-substratum adhesion in neuronal morphogenesis. Dev Biol. 1975 May;44(1):77–91. doi: 10.1016/0012-1606(75)90378-4. [DOI] [PubMed] [Google Scholar]
  20. Levitt P., Moore R. Y., Garber B. B. Selective cell association of catecholamine neurons in brain aggregates in vitro. Brain Res. 1976 Jul 30;111(2):311–320. doi: 10.1016/0006-8993(76)90776-9. [DOI] [PubMed] [Google Scholar]
  21. Liesi P., Panula P., Rechardt L. Ultrastructural localization of acetylcholinesterase activity in primary cultures of rat substantia nigra. Histochemistry. 1980;70(1):7–18. doi: 10.1007/BF00508840. [DOI] [PubMed] [Google Scholar]
  22. Lindsay R. M. Adult rat brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurones. Nature. 1979 Nov 1;282(5734):80–82. doi: 10.1038/282080a0. [DOI] [PubMed] [Google Scholar]
  23. Lohmann S. M., Walter U., Miller P. E., Greengard P., De Camilli P. Immunohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain. Proc Natl Acad Sci U S A. 1981 Jan;78(1):653–657. doi: 10.1073/pnas.78.1.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mena E. E., Cotman C. W. Synaptic cleft glycoproteins contain homologous amino acid sequences. Science. 1982 Apr 23;216(4544):422–424. doi: 10.1126/science.7071591. [DOI] [PubMed] [Google Scholar]
  25. Morales R., Duncan D. Specialized contacts of astrocytes with astrocytes and with other cell types in the spinal cord of the cat. Anat Rec. 1975 Jun;182(2):255–265. doi: 10.1002/ar.1091820209. [DOI] [PubMed] [Google Scholar]
  26. Paetau A., Mellström K., Westermark B., Dahl D., Haltia M., Vaheri A. Mutually exclusive expression of fibronectin and glial fibrillary acidic protein in cultured brain cells. Exp Cell Res. 1980 Oct;129(2):337–344. doi: 10.1016/0014-4827(80)90501-7. [DOI] [PubMed] [Google Scholar]
  27. Privat A. Postnatal gliogenesis in the mammalian brain. Int Rev Cytol. 1975;40:281–323. doi: 10.1016/s0074-7696(08)60955-9. [DOI] [PubMed] [Google Scholar]
  28. Raff M. C., Fields K. L., Hakomori S. I., Mirsky R., Pruss R. M., Winter J. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 1979 Oct 5;174(2):283–308. doi: 10.1016/0006-8993(79)90851-5. [DOI] [PubMed] [Google Scholar]
  29. Raju T., Bignami A., Dahl D. In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Immunofluorescence study with neurofilament and glial filament antisera. Dev Biol. 1981 Jul 30;85(2):344–357. doi: 10.1016/0012-1606(81)90266-9. [DOI] [PubMed] [Google Scholar]
  30. Schurch-Rathgeb Y., Mongard D. Brain development influences the appearance of glial factor-like activity in rat brain primary cultures. Nature. 1978 May 25;273(5660):308–309. doi: 10.1038/273308a0. [DOI] [PubMed] [Google Scholar]
  31. Sensenbrenner M., Mandel P. Behaviour of neuroblasts in the presence of glial cells, fibroblasts and meningeal cells in culture. Exp Cell Res. 1974 Jul;87(1):159–167. doi: 10.1016/0014-4827(74)90538-2. [DOI] [PubMed] [Google Scholar]
  32. Sensenbrenner M., Springer N., Booher J., Mandel P. Histochemical studies during the differentiation of dissociated nerve cells cultivated in the presence of brain extracts. Neurobiology. 1972;2(2):49–60. [PubMed] [Google Scholar]
  33. Sidman R. L., Rakic P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 1973 Nov 9;62(1):1–35. doi: 10.1016/0006-8993(73)90617-3. [DOI] [PubMed] [Google Scholar]
  34. Skoff R. P. Neuroglia: a reevaluation of their origin and development. Pathol Res Pract. 1980;168(4):279–300. doi: 10.1016/S0344-0338(80)80270-6. [DOI] [PubMed] [Google Scholar]
  35. Stieg P. E., Kimelberg H. K., Mazurkiewicz J. E., Banker G. A. Distribution of glial fibrillary acidic protein and fibronectin in primary astroglial cultures from rat brain. Brain Res. 1980 Oct 20;199(2):493–500. doi: 10.1016/0006-8993(80)90709-x. [DOI] [PubMed] [Google Scholar]
  36. Tartakoff A., Vassalli P., Détraz M. Comparative studies of intracellular transport of secretory proteins. J Cell Biol. 1978 Dec;79(3):694–707. doi: 10.1083/jcb.79.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Terranova V. P., Rohrbach D. H., Martin G. R. Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen. Cell. 1980 Dec;22(3):719–726. doi: 10.1016/0092-8674(80)90548-6. [DOI] [PubMed] [Google Scholar]
  38. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  39. Vaheri A., Ruoslahti E., Westermark B., Ponten J. A common cell-type specific surface antigen in cultured human glial cells and fibroblasts: loss in malignant cells. J Exp Med. 1976 Jan 1;143(1):64–72. doi: 10.1084/jem.143.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Varon S. Neurons and glia in neural cultures. Exp Neurol. 1975 Sep;48(3 Pt 2):93–195. doi: 10.1016/0014-4886(75)90173-9. [DOI] [PubMed] [Google Scholar]
  41. Virtanen I., Ekblom P., Laurila P. Subcellular compartmentalization of saccharide moieties in cultured normal and malignant cells. J Cell Biol. 1980 May;85(2):429–434. doi: 10.1083/jcb.85.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Whatley S. A., Hall C., Lim L. Hypothalamic neurons in dissociated cell culture: the mechanism of increased survival times in the presence of non-neuronal cells. J Neurochem. 1981 Jun;36(6):2052–2056. doi: 10.1111/j.1471-4159.1981.tb10833.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES