Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Mar 1;96(3):722–729. doi: 10.1083/jcb.96.3.722

Possible role for cell-surface carbohydrate-binding molecules in lymphocyte recirculation

PMCID: PMC2112421  PMID: 6833380

Abstract

We are investigating the hypothesis that carbohydrate-binding molecules on the cell surface are involved in the recirculation of lymphocytes from the bloodstream into lymphoid organs. This phenomenon requires the specific attachment of circulating lymphocytes to the endothelial cells of postcapillary venules. Using an in vitro assay to measure the adhesive interaction between lymphocytes and postcapillary venules, we have found that L-fucose, D mannose, and the L-fucose-rich, sulfated polysaccharide fucoidin specifically inhibit this binding interaction. L-fucose shows stereo-selective inhibitory activity at concentrations greater than 18 mM while fucoidin produces 50% inhibition at approximately 1-5 X 10(-8) M. Fucoidin appears to interact with the lymphocyte, and not the postcapillary venule, to inhibit binding. These data suggest that cell surface carbohydrates (fucoselike) and carbohydrate-binding molecules (cell surface lectins) may contribute to the specific attachment of lymphocytes to postcapillary venules.

Full Text

The Full Text of this article is available as a PDF (1,013.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson A. O., Anderson N. D. Lymphocyte emigration from high endothelial venules in rat lymph nodes. Immunology. 1976 Nov;31(5):731–748. [PMC free article] [PubMed] [Google Scholar]
  2. Barondes S. H. Lectins: their multiple endogenous cellular functions. Annu Rev Biochem. 1981;50:207–231. doi: 10.1146/annurev.bi.50.070181.001231. [DOI] [PubMed] [Google Scholar]
  3. Borberg H., Yesner I., Gesner B., Silber R. The effect of N acetyl C-galactosamine and other sugars on the mitogenic activity and attachment of PHA to tonsil cells. Blood. 1968 Jun;31(6):747–757. [PubMed] [Google Scholar]
  4. Butcher E. C., Scollay R. G., Weissman I. L. Lymphocyte adherence to high endothelial venules: characterization of a modified in vitro assay, and examination of the binding of syngeneic and allogeneic lymphocyte populations. J Immunol. 1979 Nov;123(5):1996–2003. [PubMed] [Google Scholar]
  5. Butcher E., Scollay R., Weissman I. Evidence of continuous evolutionary change in structures mediating adherence of lymphocytes to specialised venules. Nature. 1979 Aug 9;280(5722):496–498. doi: 10.1038/280496a0. [DOI] [PubMed] [Google Scholar]
  6. Cox R. P., Gesner B. M. Effect of simple sugars on the morphology and growth pattern of mammalian cell cultures. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1571–1579. doi: 10.1073/pnas.54.6.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drake D. K., Rosen S. D. Identification and purification of an endogenous receptor for the lectin pallidin from Polysphondylium pallidum. J Cell Biol. 1982 May;93(2):383–389. doi: 10.1083/jcb.93.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dulaney J. T. Binding interactions of glycoproteins with lectins. Mol Cell Biochem. 1978 Oct 13;21(1):43–63. doi: 10.1007/BF00230195. [DOI] [PubMed] [Google Scholar]
  9. Ford W. L., Gowans J. L. The traffic of lymphocytes. Semin Hematol. 1969 Jan;6(1):67–83. [PubMed] [Google Scholar]
  10. Ford W. L. Lymphocyte migration and immune responses. Prog Allergy. 1975;19:1–59. doi: 10.1159/000313381. [DOI] [PubMed] [Google Scholar]
  11. Frazier W., Glaser L. Surface components and cell recognition. Annu Rev Biochem. 1979;48:491–523. doi: 10.1146/annurev.bi.48.070179.002423. [DOI] [PubMed] [Google Scholar]
  12. GESNER B. M., GINSBURG V. EFFECT OF GLYCOSIDASES ON THE FATE OF TRANSFUSED LYMPHOCYTES. Proc Natl Acad Sci U S A. 1964 Sep;52:750–755. doi: 10.1073/pnas.52.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glabe C. G., Grabel L. B., Vacquier V. D., Rosen S. D. Carbohydrate specificity of sea urchin sperm bindin: a cell surface lectin mediating sperm-egg adhesion. J Cell Biol. 1982 Jul;94(1):123–128. doi: 10.1083/jcb.94.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldstein I. J., Hayes C. E. The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem. 1978;35:127–340. doi: 10.1016/s0065-2318(08)60220-6. [DOI] [PubMed] [Google Scholar]
  15. Grabel L. B., Glabe C. G., Singer M. S., Martin G. R., Rosen S. D. A fucan specific lectin on teratocarcinoma stem cells. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1165–1171. doi: 10.1016/s0006-291x(81)80134-9. [DOI] [PubMed] [Google Scholar]
  16. Grabel L. B., Rosen S. D., Martin G. R. Teratocarcinoma stem cells have a cell surface carbohydrate-binding component implicated in cell-cell adhesion. Cell. 1979 Jul;17(3):477–484. doi: 10.1016/0092-8674(79)90255-1. [DOI] [PubMed] [Google Scholar]
  17. Krantz M. J., Holtzman N. A., Stowell C. P., Lee Y. C. Attachment of thioglycosides to proteins: enhancement of liver membrane binding. Biochemistry. 1976 Sep 7;15(18):3963–3968. doi: 10.1021/bi00663a009. [DOI] [PubMed] [Google Scholar]
  18. Ofek I., Beachey E. H. Bacterial adherence. Adv Intern Med. 1980;25:503–532. [PubMed] [Google Scholar]
  19. Paulson J. C., Sadler J. E., Hill R. L. Restoration of specific myxovirus receptors to asialoerythrocytes by incorporation of sialic acid with pure sialyltransferases. J Biol Chem. 1979 Mar 25;254(6):2120–2124. [PubMed] [Google Scholar]
  20. Ray J., Shinnick T., Lerner R. A mutation altering the function of a carbohydrate binding protein blocks cell-cell cohesion in developing Dictyostelium discoideum. Nature. 1979 May 17;279(5710):215–221. doi: 10.1038/279215a0. [DOI] [PubMed] [Google Scholar]
  21. Rosen S. D., Kafka J. A., Simpson D. L., Barondes S. H. Developmentally regulated, carbohydrate-binding protein in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2554–2557. doi: 10.1073/pnas.70.9.2554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stamper H. B., Jr, Woodruff J. J. An in vitro model of lymphocyte homing. I. Characterization of the interaction between thoracic duct lymphocytes and specialized high-endothelial venules of lymph nodes. J Immunol. 1977 Aug;119(2):772–780. [PubMed] [Google Scholar]
  23. Stamper H. B., Jr, Woodruff J. J. Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J Exp Med. 1976 Sep 1;144(3):828–833. doi: 10.1084/jem.144.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Townsend R., Stahl P. Isolation and characterization of a mannose/N-acetylglucosamine/fucose-binding protein from rat liver. Biochem J. 1981 Jan 15;194(1):209–214. doi: 10.1042/bj1940209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Waymouth C. Osmolality of mammalian blood and of media for culture of mammalian cells. In Vitro. 1970 Sep-Oct;6(2):109–127. doi: 10.1007/BF02616113. [DOI] [PubMed] [Google Scholar]
  26. Yates J. R., Nuss D. L. Time-dependent increase in the resistance of mammalian cell protein synthesis to inhibition by hypertonic medium. J Biol Chem. 1982 Apr 10;257(7):3458–3461. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES