Abstract
We have employed a series of permeant, nontoxic, fluorescent probes to detect changes in ionic conditions within the mitotic apparatus of living endosperm cells of Haemanthus during the transition from metaphase to anaphase. Fluorescence emission intensity measurements from the spindle for chlorotetracycline (CTC) decline before the onset of anaphase, indicating a reduction in the amount of membrane- associated Ca2+ and suggesting an efflux of Ca2+ from membrane compartments into the spindle. Subsequent to the onset of anaphase, we observe increases in fluorescence with both 8-anilino-1-naphthalene sulfonate (ANS) and 3,3'-dipentyl 2,2'-dioxacarbocyanine (diO-C5(3)), sensitive to cationic and anionic charges at membrane surfaces, respectively. The increases with ANS and diO-C5(3) suggest that redistributions of ions within the spindle accompany anaphase motion. During the metaphase/anaphase transition, spindle membrane content remains constant, as evidenced by unchanging fluorescence with the hydrophobic probe, N-phenyl-1-naphthylamine (NPN). Shifts in emission intensity from the nonspindle cytoplasm or from the spindle poles do not accompany the changes in fluorescence we observe in the spindle, suggesting that any ionic fluxes responsible for the changes in fluorescence are restricted to the spindle domain.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andley U. P., Chakrabarti B. Interaction of 8-amino-1-naphthalenesulfonate with rod outer segment membrane. Biochemistry. 1981 Mar 17;20(6):1687–1693. doi: 10.1021/bi00509a043. [DOI] [PubMed] [Google Scholar]
- Beeler T. J., Farmen R. H., Martonosi A. N. The mechanism of voltage-sensitive dye responses on sarcoplasmic reticulum. J Membr Biol. 1981;62(1-2):113–137. doi: 10.1007/BF01870205. [DOI] [PubMed] [Google Scholar]
- Beeler T., Russell J. T., Martonosi A. Optical probe responses on sarcoplasmic reticulum: oxacarbocyanines as probes of membrane potential. Eur J Biochem. 1979 Apr;95(3):579–591. doi: 10.1111/j.1432-1033.1979.tb12999.x. [DOI] [PubMed] [Google Scholar]
- Borle A. B. Control, Modulation, and regulation of cell calcium. Rev Physiol Biochem Pharmacol. 1981;90:13–153. doi: 10.1007/BFb0034078. [DOI] [PubMed] [Google Scholar]
- Caswell A. H., Brandt N. R. Ion-induced release of calcium from isolated sarcoplasmic reticulum. J Membr Biol. 1981 Jan 30;58(1):21–33. doi: 10.1007/BF01871031. [DOI] [PubMed] [Google Scholar]
- Caswell A. H., Hutchison J. D. Selectivity of cation chelation to tetracyclines: evidence for special conformation of calcium chelate. Biochem Biophys Res Commun. 1971 May 7;43(3):625–630. doi: 10.1016/0006-291x(71)90660-7. [DOI] [PubMed] [Google Scholar]
- Caswell A. H., Warren S. Observation of calcium uptake by isolated sarcoplasmic reticulum employing a fluorescent chelate probe. Biochem Biophys Res Commun. 1972 Mar 10;46(5):1757–1763. doi: 10.1016/0006-291x(72)90047-2. [DOI] [PubMed] [Google Scholar]
- Cohen L. B., Salzberg B. M., Davila H. V., Ross W. N., Landowne D., Waggoner A. S., Wang C. H. Changes in axon fluorescence during activity: molecular probes of membrane potential. J Membr Biol. 1974;19(1):1–36. doi: 10.1007/BF01869968. [DOI] [PubMed] [Google Scholar]
- Euteneuer U., McIntosh J. R. Polarity of midbody and phragmoplast microtubules. J Cell Biol. 1980 Nov;87(2 Pt 1):509–515. doi: 10.1083/jcb.87.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Use of chlorotetracycline fluorescence to demonstrate Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Nature. 1979 Sep 13;281(5727):146–148. doi: 10.1038/281146a0. [DOI] [PubMed] [Google Scholar]
- Flanagan M. T., Hesketh T. R. Electrostatic interactions in the binding of fluorescent probes to lipid membranes. Biochim Biophys Acta. 1973 Mar 29;298(3):535–545. doi: 10.1016/0005-2736(73)90072-2. [DOI] [PubMed] [Google Scholar]
- Fuseler J. W. Mitosis in Tilia americana endosperm. J Cell Biol. 1975 Jan;64(1):159–171. doi: 10.1083/jcb.64.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hallett M., Schneider A. S., Carbone E. Tetracycline fluorescence as calcium-probe for nerve membrane with some model studies using erythrocyte ghosts. J Membr Biol. 1972;10(1):31–44. doi: 10.1007/BF01867846. [DOI] [PubMed] [Google Scholar]
- Hard R., Allen R. D. Behaviour of kinetochore fibres in Haemanthus katherinae during anaphase movements of chromosomes. J Cell Sci. 1977;27:47–56. doi: 10.1242/jcs.27.1.47. [DOI] [PubMed] [Google Scholar]
- Harris P. The role of membranes in the ogranization of the mitotic apparatus. Exp Cell Res. 1975 Sep;94(2):409–425. doi: 10.1016/0014-4827(75)90507-8. [DOI] [PubMed] [Google Scholar]
- Haynes D. H. 1-Anilino-8-naphthalenesulfonate: a fluorescent indicator of ion binding electrostatic potential on the membrane surface. J Membr Biol. 1974 Jul 12;17(3):341–366. doi: 10.1007/BF01870191. [DOI] [PubMed] [Google Scholar]
- Hepler P. K., Jackson W. T. Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus katherinae Baker. J Cell Biol. 1968 Aug;38(2):437–446. doi: 10.1083/jcb.38.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson W. T., Doyle B. G. Membrane distribution in dividing endosperm cells of Haemanthus. J Cell Biol. 1982 Sep;94(3):637–643. doi: 10.1083/jcb.94.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LaPorte D. C., Wierman B. M., Storm D. R. Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry. 1980 Aug 5;19(16):3814–3819. doi: 10.1021/bi00557a025. [DOI] [PubMed] [Google Scholar]
- MOLE-BAJER J. Cine-micrographic analysis of C-mitosis in endosperm. Chromosoma. 1958;9(4):332–358. doi: 10.1007/BF02568085. [DOI] [PubMed] [Google Scholar]
- McIntosh J. R., Cande W. Z., Snyder J. A. Structure and physiology of the mammalian mitotic spindle. Soc Gen Physiol Ser. 1975;30:31–76. [PubMed] [Google Scholar]
- Moll E., Paweletz N. Membranes of the mitotic apparatus of mammalian cells. Eur J Cell Biol. 1980 Aug;21(3):280–287. [PubMed] [Google Scholar]
- Overath P., Träuble H. Phase transitions in cells, membranes, and lipids of Escherichia coli. Detection by fluorescent probes, light scattering, and dilatometry. Biochemistry. 1973 Jul 3;12(14):2625–2634. doi: 10.1021/bi00738a012. [DOI] [PubMed] [Google Scholar]
- Owen N. E., Le Breton G. C. Ca2+ mobilization in blood platelets as visualized by chlortetracycline fluorescence. Am J Physiol. 1981 Oct;241(4):H613–H619. doi: 10.1152/ajpheart.1981.241.4.H613. [DOI] [PubMed] [Google Scholar]
- Rink T. J., Tsien R. Y., Warner A. E. Free calcium in Xenopus embryos measured with ion-selective microelectrodes. Nature. 1980 Feb 14;283(5748):658–660. doi: 10.1038/283658a0. [DOI] [PubMed] [Google Scholar]
- Russell J. T., Beeler T., Martonosi A. Optical probe responses on sarcoplasmic reticulum. Oxacarbocyanines. J Biol Chem. 1979 Mar 25;254(6):2040–2046. [PubMed] [Google Scholar]
- Scordilis S. P., Tedeschi H., Edwards C. Donnan potential of rabbit skeletal muscle myofibrils I: electrofluorochromometric detection of potential. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1325–1329. doi: 10.1073/pnas.72.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sims P. J., Waggoner A. S., Wang C. H., Hoffman J. F. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry. 1974 Jul 30;13(16):3315–3330. doi: 10.1021/bi00713a022. [DOI] [PubMed] [Google Scholar]
- Slavík J., Horák J., Ríhová L., Kotyk A. Anilinonaphthalene sulfonate fluorescence and amino acid transport in yeast. J Membr Biol. 1982;64(3):175–179. doi: 10.1007/BF01870883. [DOI] [PubMed] [Google Scholar]
- Träuble H., Overath P. The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions. Biochim Biophys Acta. 1973 May 25;307(3):491–512. doi: 10.1016/0005-2736(73)90296-4. [DOI] [PubMed] [Google Scholar]
- Waggoner A. S. Dye indicators of membrane potential. Annu Rev Biophys Bioeng. 1979;8:47–68. doi: 10.1146/annurev.bb.08.060179.000403. [DOI] [PubMed] [Google Scholar]
- Wolniak S. M., Hepler P. K., Jackson W. T. Detection of the membrane-calcium distribution during mitosis in Haemanthus endosperm with chlorotetracycline. J Cell Biol. 1980 Oct;87(1):23–32. doi: 10.1083/jcb.87.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolniak S. M., Hepler P. K., Jackson W. T. The coincident distribution of calcium-rich membranes and kinetochore fibers at metaphase in living endosperm cells of Haemanthus. Eur J Cell Biol. 1981 Aug;25(1):171–174. [PubMed] [Google Scholar]
- Yguerabide J., Foster M. C. Fluorescence spectroscopy of biological membranes. Mol Biol Biochem Biophys. 1981;31:199–269. doi: 10.1007/978-3-642-81537-9_5. [DOI] [PubMed] [Google Scholar]
- Zaritsky A., Kihara M., Macnab R. M. Measurement of membrane potential in Bacillus subtilis: a comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes. J Membr Biol. 1981;63(3):215–231. doi: 10.1007/BF01870983. [DOI] [PubMed] [Google Scholar]
- Zimniak P., Racker E. Electrogenicity of Ca2+ transport catalyzed by the Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem. 1978 Jul 10;253(13):4631–4637. [PubMed] [Google Scholar]
