Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Jun 1;96(6):1717–1726. doi: 10.1083/jcb.96.6.1717

Synaptonemal complexes are integral components of the isolated mouse spermatocyte nuclear matrix

PMCID: PMC2112440  PMID: 6222057

Abstract

Synaptonemal complexes (SCs) have been isolated as integral components of the nuclear matrix from purified mouse pachytene spermatocytes. These nuclear synaptonemal complex-matrices are prepared by extracting Triton X-100-treated nuclei with low (0.2 M) and high (1.0 or 2.0 M) NaCl, DNase I, and RNase A to remove 85% of the nuclear proteins, 97% of the RNA, and 99% of the DNA. Studies with the light and electron microscopes indicate that these matrices, while lacking a distinct lamina, contain nuclear pores interconnected by a fiber network, residual nucleoli, and interchromatin fibers. In addition, the pachytene spermatocyte matrices contain residual XY heterochromatin and the principal components of the SCs, including two lateral elements, a central element, a presumptive centromere, and attachment plaques. These SCs are preserved within the matrix and retain their structural association with the pore-fiber complex, even when subjected to strong dissociating conditions. Nuclear matrices from pachytene spermatocytes and spermatids (steps 1-8), when analyzed by SDS PAGE, contain an array of polypeptides distinct from those of mouse liver nuclear matrices. Proteins of spermatogenic matrices range in Mr from 8,000 to approximately 150,000. The prominent lamina proteins (Mr approximately 60,000-70,000) of somatic nuclear matrices are either absent or represent only a minor part of the spermatogenic matrix. The polypeptide composition of the pachytene spermatocyte and spermatid matrices are similar, although minor quantitative and qualitative differences are evident. These observations suggest that the SC constituents may consist of a heterogeneous group of proteins present in low proportion relative to total matrix proteins, or they may be retained, but in a different form, within the spermatid matrix.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson R. P., Blobel G. Isolation of nuclear pore complexes in association with a lamina. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1007–1011. doi: 10.1073/pnas.72.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agutter P. S., Richardson J. C. Nuclear non-chromatin proteinaceous structures: their role in the organization and function of the interphase nucleus. J Cell Sci. 1980 Aug;44:395–435. doi: 10.1242/jcs.44.1.395. [DOI] [PubMed] [Google Scholar]
  3. Bellvé A. R., Cavicchia J. C., Millette C. F., O'Brien D. A., Bhatnagar Y. M., Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol. 1977 Jul;74(1):68–85. doi: 10.1083/jcb.74.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bellvé A. R., Millette C. F., Bhatnagar Y. M., O'Brien D. A. Dissociation of the mouse testis and characterization of isolated spermatogenic cells. J Histochem Cytochem. 1977 Jul;25(7):480–494. doi: 10.1177/25.7.893996. [DOI] [PubMed] [Google Scholar]
  5. Berezney R., Buchholtz L. A. Isolation and characterization of rat liver nuclear matrices containing high molecular weight deoxyribonucleic acid. Biochemistry. 1981 Aug 18;20(17):4995–5002. doi: 10.1021/bi00520a028. [DOI] [PubMed] [Google Scholar]
  6. Berezney R., Coffey D. S. Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei. J Cell Biol. 1977 Jun;73(3):616–637. doi: 10.1083/jcb.73.3.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berezney R. Effect of protease inhibitors on matrix proteins and the association of replicating DNA. Exp Cell Res. 1979 Oct 15;123(2):411–414. doi: 10.1016/0014-4827(79)90489-0. [DOI] [PubMed] [Google Scholar]
  8. Blobel G., Potter V. R. Nuclei from rat liver: isolation method that combines purity with high yield. Science. 1966 Dec 30;154(3757):1662–1665. doi: 10.1126/science.154.3757.1662. [DOI] [PubMed] [Google Scholar]
  9. Bloom S. E., Goodpasture C. An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. Hum Genet. 1976 Oct 28;34(2):199–206. doi: 10.1007/BF00278889. [DOI] [PubMed] [Google Scholar]
  10. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  11. COLEMAN J. R., MOSES M. J. DNA AND THE FINE STRUCTURE OF SYNAPTIC CHROMOSOMES IN THE DOMESTIC ROOSTER (GALLUS DOMESTICUS). J Cell Biol. 1964 Oct;23:63–78. doi: 10.1083/jcb.23.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Callan H. G. Chromosomes and nucleoli of the axolotl, Ambystoma mexicanum. J Cell Sci. 1966 Mar;1(1):85–108. doi: 10.1242/jcs.1.1.85. [DOI] [PubMed] [Google Scholar]
  13. Chemes H. E., Fawcett D. W., Dym M. Unusual features of the nuclear envelope in human spermatogenic cells. Anat Rec. 1978 Dec;192(4):493–512. doi: 10.1002/ar.1091920404. [DOI] [PubMed] [Google Scholar]
  14. Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972 Jan;52(1):198–236. doi: 10.1152/physrev.1972.52.1.198. [DOI] [PubMed] [Google Scholar]
  15. Comings D. E., Okada T. A. Nuclear proteins. III. The fibrillar nature of the nuclear matrix. Exp Cell Res. 1976 Dec;103(2):341–360. doi: 10.1016/0014-4827(76)90271-8. [DOI] [PubMed] [Google Scholar]
  16. Comings D. E., Okada T. A. Whole mount electron microscopy of human meiotic chromosomes. Exp Cell Res. 1971 Mar;65(1):99–103. doi: 10.1016/s0014-4827(71)80054-x. [DOI] [PubMed] [Google Scholar]
  17. Comings D. E., Okada T. A. Whole mount electron microscopy of meiotic chromosomes and the synaptonmal complex. Chromosoma. 1970;30(3):269–286. doi: 10.1007/BF00321061. [DOI] [PubMed] [Google Scholar]
  18. Conner G. E., Noonan N. E., Noonan K. D. Nuclear envelope of Chinese hamster ovary cells. Re-formation of the nuclear envelope following mitosis. Biochemistry. 1980 Jan 22;19(2):277–289. doi: 10.1021/bi00543a005. [DOI] [PubMed] [Google Scholar]
  19. Counce S. J., Meyer G. F. Differentiation of the synaptonemal complex and the kinetochore in Locusta spermatocytes studied by whole mount electron microscopy. Chromosoma. 1973 Nov 21;44(2):231–253. doi: 10.1007/BF00329119. [DOI] [PubMed] [Google Scholar]
  20. Dresser M. E., Moses M. J. Silver staining of synaptonemal complexes in surface spreads for light and electron microscopy. Exp Cell Res. 1979 Jul;121(2):416–419. doi: 10.1016/0014-4827(79)90023-5. [DOI] [PubMed] [Google Scholar]
  21. Dresser M. E., Moses M. J. Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). IV. Light and electron microscopy of synapsis and nucleolar development by silver staining. Chromosoma. 1980;76(1):1–22. doi: 10.1007/BF00292222. [DOI] [PubMed] [Google Scholar]
  22. Esponda P., Giménez-Martín G. The attachment of the synaptonemal complex to the nuclear envelope. An ultrastructural and cytochemical analysis. Chromosoma. 1972;38(4):405–417. doi: 10.1007/BF00320159. [DOI] [PubMed] [Google Scholar]
  23. FAWCETT D. W. The fine structure of chromosomes in the meiotic prophase of vertebrate spermatocytes. J Biophys Biochem Cytol. 1956 Jul 25;2(4):403–406. doi: 10.1083/jcb.2.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. FLECK A., MUNRO H. N. The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochim Biophys Acta. 1962 May 14;55:571–583. doi: 10.1016/0006-3002(62)90836-3. [DOI] [PubMed] [Google Scholar]
  25. Fawcett D. W., Chemes H. E. Changes in distribution of nuclear pores during differentiation of the male germ cells. Tissue Cell. 1979;11(1):147–162. doi: 10.1016/0040-8166(79)90015-6. [DOI] [PubMed] [Google Scholar]
  26. Fisher P. A., Berrios M., Blobel G. Isolation and characterization of a proteinaceous subnuclear fraction composed of nuclear matrix, peripheral lamina, and nuclear pore complexes from embryos of Drosophila melanogaster. J Cell Biol. 1982 Mar;92(3):674–686. doi: 10.1083/jcb.92.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fleck A., Begg D. The estimation of ribonucleic acid using ultraviolet absorption measurements. Biochim Biophys Acta. 1965 Nov 8;108(3):333–339. doi: 10.1016/0005-2787(65)90025-0. [DOI] [PubMed] [Google Scholar]
  28. Forejt J., Goetz P. Synaptonemal complexes of mouse and human pachytene chromosomes visualized by silver staining in air-dried preparations. Chromosoma. 1979 Aug 10;73(2):255–261. doi: 10.1007/BF00331576. [DOI] [PubMed] [Google Scholar]
  29. Franke W. W., Scheer U., Krohne G., Jarasch E. D. The nuclear envelope and the architecture of the nuclear periphery. J Cell Biol. 1981 Dec;91(3 Pt 2):39s–50s. doi: 10.1083/jcb.91.3.39s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gerace L., Blobel G. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell. 1980 Jan;19(1):277–287. doi: 10.1016/0092-8674(80)90409-2. [DOI] [PubMed] [Google Scholar]
  31. Gerace L., Blum A., Blobel G. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution. J Cell Biol. 1978 Nov;79(2 Pt 1):546–566. doi: 10.1083/jcb.79.2.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gillies C. B. Synaptonemal complex and chromosome structure. Annu Rev Genet. 1975;9:91–109. doi: 10.1146/annurev.ge.09.120175.000515. [DOI] [PubMed] [Google Scholar]
  33. Hodge L. D., Mancini P., Davis F. M., Heywood P. Nuclear matrix of HeLa S3 cells. Polypeptide composition during adenovirus infection and in phases of the cell cycle. J Cell Biol. 1977 Jan;72(1):194–208. doi: 10.1083/jcb.72.1.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hotta Y., Stern H. Analysis of DNA synthesis during meiotic prophase in Lilium. J Mol Biol. 1971 Feb 14;55(3):337–355. doi: 10.1016/0022-2836(71)90322-6. [DOI] [PubMed] [Google Scholar]
  35. Jost E., Johnson R. T. Nuclear lamina assembly, synthesis and disaggregation during the cell cycle in synchronized HeLa cells. J Cell Sci. 1981 Feb;47:25–53. doi: 10.1242/jcs.47.1.25. [DOI] [PubMed] [Google Scholar]
  36. Krohne G., Dabauvalle M. C., Franke W. W. Cell type-specific differences in protein composition of nuclear pore complex-lamina structures in oocytes and erythrocytes of Xenopus laevis. J Mol Biol. 1981 Sep 5;151(1):121–141. doi: 10.1016/0022-2836(81)90224-2. [DOI] [PubMed] [Google Scholar]
  37. Krohne G., Franke W. W., Scheer U. The major polypeptides of the nuclear pore complex. Exp Cell Res. 1978 Oct 1;116(1):85–102. doi: 10.1016/0014-4827(78)90067-8. [DOI] [PubMed] [Google Scholar]
  38. Lau Y. F., Pfeiffer R. A., Arrighi F. E., Hsu T. C. Combination of silver and fluorescent staining for metaphase chromosomes. Am J Hum Genet. 1978 Jan;30(1):76–79. [PMC free article] [PubMed] [Google Scholar]
  39. Long B. H., Huang C. Y., Pogo A. O. Isolation and characterization of the nuclear matrix in Friend erythroleukemia cells: chromatin and hnRNA interactions with the nuclear matrix. Cell. 1979 Dec;18(4):1079–1090. doi: 10.1016/0092-8674(79)90221-6. [DOI] [PubMed] [Google Scholar]
  40. MONESI V. Autoradiographic study of DNA synthesis and the cell cycle in spermatogonia and spermatocytes of mouse testis using tritiated thymidine. J Cell Biol. 1962 Jul;14:1–18. doi: 10.1083/jcb.14.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. MONESI V. RIBONUCLEIC ACID SYNTHESIS DURING MITOSIS AND MEIOSIS IN THE MOUSE TESTIS. J Cell Biol. 1964 Sep;22:521–532. doi: 10.1083/jcb.22.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. MOSES M. J. Chromosomal structures in crayfish spermatocytes. J Biophys Biochem Cytol. 1956 Mar 25;2(2):215–218. doi: 10.1083/jcb.2.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Meistrich M. L. Separation of mouse spermatogenic cells by velocity sedimentation. J Cell Physiol. 1972 Oct;80(2):299–312. doi: 10.1002/jcp.1040800218. [DOI] [PubMed] [Google Scholar]
  44. Miller O. L., Jr, Hamkalo B. A. Visualization of RNA synthesis on chromosomes. Int Rev Cytol. 1972;33:1–25. doi: 10.1016/s0074-7696(08)61446-1. [DOI] [PubMed] [Google Scholar]
  45. Monesi V. Synthetic activities during spermatogenesis in the mouse RNA and protein. Exp Cell Res. 1965 Aug;39(1):197–224. doi: 10.1016/0014-4827(65)90023-6. [DOI] [PubMed] [Google Scholar]
  46. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  47. Moses M. J., Solari A. J. Positive contrast staining and protected drying of surface spreads: electron microscopy of the synaptonemal complex by a new method. J Ultrastruct Res. 1976 Jan;54(1):109–114. doi: 10.1016/s0022-5320(76)80013-5. [DOI] [PubMed] [Google Scholar]
  48. Moses M. J. Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). I. Morphology of the autosomal complement in spread preparations. Chromosoma. 1977 Mar 16;60(2):99–125. doi: 10.1007/BF00288459. [DOI] [PubMed] [Google Scholar]
  49. Munro H. N. The determination of nucleic acids. Methods Biochem Anal. 1966;14:113–176. doi: 10.1002/9780470110324.ch5. [DOI] [PubMed] [Google Scholar]
  50. Pathak S., Hsu T. C. Silver-stained structures in mammalian meiotic prophase. Chromosoma. 1979 Jan 8;70(2):195–203. doi: 10.1007/BF00288406. [DOI] [PubMed] [Google Scholar]
  51. Peters K. E., Commings D. E. Two-dimensinal gel electrophoresis of rat liver nuclear washes, nuclear matrix, and hnRNA proteins. J Cell Biol. 1980 Jul;86(1):135–155. doi: 10.1083/jcb.86.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Romrell L. J., Bellvé A. R., Fawcett D. W. Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Dev Biol. 1976 Mar;49(1):119–131. doi: 10.1016/0012-1606(76)90262-1. [DOI] [PubMed] [Google Scholar]
  54. Shaper J. H., Pardoll D. M., Kaufmann S. H., Barrack E. R., Vogelstein B., Coffey D. S. The relationship of the nuclear matrix to cellular structure and function. Adv Enzyme Regul. 1978;17:213–248. doi: 10.1016/0065-2571(79)90015-3. [DOI] [PubMed] [Google Scholar]
  55. Sheridan W. F., Barrnett R. J. Cytochemical studies on chromosome ultrastructure. J Ultrastruct Res. 1969 May;27(3):216–229. doi: 10.1016/s0022-5320(69)80013-4. [DOI] [PubMed] [Google Scholar]
  56. Solari A. J., Moses M. J. The structure of the central region in the synaptonemal complexes of hamster and cricket spermatocytes. J Cell Biol. 1973 Jan;56(1):145–152. doi: 10.1083/jcb.56.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Solari A. J. Ultrastructure and composition of the synaptonemal complex in spread and negatively stained spermatocytes of the golden hamster and the albino rat. Chromosoma. 1972;39(3):237–263. doi: 10.1007/BF00290786. [DOI] [PubMed] [Google Scholar]
  58. Stick R., Schwarz H. The disappearance of the nuclear lamina during spermatogenesis: an electron microscopic and immunofluorescence study. Cell Differ. 1982 Jun;11(4):235–243. doi: 10.1016/0045-6039(82)90071-9. [DOI] [PubMed] [Google Scholar]
  59. Thomas P. S., Farquhar M. N. Specific measurement of DNA in nuclei and nucleic acids using diaminobenzoic acid. Anal Biochem. 1978 Aug 15;89(1):35–44. doi: 10.1016/0003-2697(78)90724-8. [DOI] [PubMed] [Google Scholar]
  60. Walmsley M., Moses M. J. Isolation of synaptonemal complexes from hamster spermatocytes. Exp Cell Res. 1981 Jun;133(2):405–411. doi: 10.1016/0014-4827(81)90333-5. [DOI] [PubMed] [Google Scholar]
  61. Westergaard M., von Wettstein D. The synaptinemal complex. Annu Rev Genet. 1972;6:71–110. doi: 10.1146/annurev.ge.06.120172.000443. [DOI] [PubMed] [Google Scholar]
  62. Woollam D. H., Ford E. H., Millen J. W. The attachment of pachytene chromosomes to the nuclear membrane in mammalian spermatocytes. Exp Cell Res. 1966 Jun;42(3):657–661. doi: 10.1016/0014-4827(66)90278-3. [DOI] [PubMed] [Google Scholar]
  63. Woollam D. H., Millen J. W., Ford E. H. Points of attachment of pachytene chromosomes to the nuclear membrane in mouse spermatocytes. Nature. 1967 Jan 21;213(5073):298–299. doi: 10.1038/213298a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES