Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1983 Jul 1;97(1):196–201. doi: 10.1083/jcb.97.1.196

Membrane-associated phosphoproteins in Plasmodium berghei-infected murine erythrocytes

PMCID: PMC2112473  PMID: 6306014

Abstract

Normal and Plasmodium berghei (NYU-2 strain)-infected murine erythrocytes display substantially different patterns of plasma membrane phosphoproteins phosphorylation. Intact erythrocytes (normal and parasite infected) incubated with 32Pi and isolated washed erythrocyte plasma membranes incubated with gamma-32P-ATP were analyzed for phosphoproteins by SDS PAGE and autoradiography. Two new phosphoproteins of molecular weight 45,000 (pp45) and 68,000 (pp68), which are absent in normal erythrocyte membranes, are associated with the membranes of infected erythrocytes subjected to both intact-cell and isolated-membrane phosphorylation conditions. Two-dimensional gel electrophoresis indicates that pp45 and pp68 are of parasite origin. Partial or complete proteolytic digestion reveals that pp45 is phosphorylated at similar amino acid residues both in intact cells and in isolated membranes. The pp45 phosphoprotein can be detected at as low as 3% parasitemia and its phosphorylation is not affected by 10 microM cAMP, 1 mM Ca2+, or 5 mM EGTA. Extraction of isolated washed plasma membranes with 0.5% Triton X-100 or 0.1 M NaOH indicates that pp45 is detergent insoluble and only partially extractable with NaOH, suggesting that pp45 is closely associated with the host erythrocyte plasma membrane.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avruch J., Fairbanks G. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. I. A monovalent cation-stimulated reaction. Biochemistry. 1974 Dec 31;13(27):5507–5514. doi: 10.1021/bi00724a009. [DOI] [PubMed] [Google Scholar]
  2. Chaimanee P., Yuthavong Y. Phosphorylation of membrane proteins from Plasmodium berghei-infected red cells. Biochem Biophys Res Commun. 1979 Apr 13;87(3):953–959. doi: 10.1016/0006-291x(79)92049-7. [DOI] [PubMed] [Google Scholar]
  3. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  4. Dunn M. J. Alterations of red blood cell sodium transport during malarial infection. J Clin Invest. 1969 Apr;48(4):674–684. doi: 10.1172/JCI106025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fogel B. J., Shields C. E., Von Doenhoff A. E., Jr The osmotic fragility of erythrocytes in experimental malaria. Am J Trop Med Hyg. 1966 May;15(3):269–275. doi: 10.4269/ajtmh.1966.15.269. [DOI] [PubMed] [Google Scholar]
  6. Greenquist A. C., Shohet S. B. Phosphorylation in erythrocyte membranes from abnormally shaped cells. Blood. 1976 Dec;48(6):877–886. [PubMed] [Google Scholar]
  7. Holbrook I. B., Leaver A. G. A procedure to increase the sensitivity of staining by Coomassie brilliant blue G250-perchloric acid solution. Anal Biochem. 1976 Oct;75(2):634–636. doi: 10.1016/0003-2697(76)90118-4. [DOI] [PubMed] [Google Scholar]
  8. Hosey M. M., Tao M. Altered erythrocyte membrane phosphorylation in sickle cell disease. Nature. 1976 Sep 30;263(5576):424–425. doi: 10.1038/263424a0. [DOI] [PubMed] [Google Scholar]
  9. Houmard J., Drapeau G. R. Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3506–3509. doi: 10.1073/pnas.69.12.3506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Howard R. J. Alterations in the surface membrane of red blood cells during malaria. Immunol Rev. 1982;61:67–107. doi: 10.1111/j.1600-065x.1982.tb00374.x. [DOI] [PubMed] [Google Scholar]
  11. Johnson R. A., Walseth T. F. The enzymatic preparation of [alpha-32P]ATP, [alpha-32P]GTP, [32P]cAMP, and [32P]cGMP, and their use in the assay of adenylate and guanylate cyclases and cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res. 1979;10:135–167. [PubMed] [Google Scholar]
  12. Kilejian A. Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4650–4653. doi: 10.1073/pnas.76.9.4650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krebs E. G., Beavo J. A. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem. 1979;48:923–959. doi: 10.1146/annurev.bi.48.070179.004423. [DOI] [PubMed] [Google Scholar]
  14. Königk E., Mirtsch S. Plasmodium chabaudi-infection of mice: specific activities of erythrocyte membrane-associated enzymes and patterns of proteins and glycoproteins of erythrocyte membrane preparations. Tropenmed Parasitol. 1977 Mar;28(1):17–22. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Laskey R. A., Mills A. D. Enhanced autoradiographic detection of 32P and 125I using intensifying screens and hypersensitized film. FEBS Lett. 1977 Oct 15;82(2):314–316. doi: 10.1016/0014-5793(77)80609-1. [DOI] [PubMed] [Google Scholar]
  18. Leida M. N., Mahoney J. R., Eaton J. W. Intraerythrocytic plasmodial calcium metabolism. Biochem Biophys Res Commun. 1981 Nov 30;103(2):402–406. doi: 10.1016/0006-291x(81)90466-6. [DOI] [PubMed] [Google Scholar]
  19. Martin W. J., Finerty J., Rosenthal A. Isolation of Plasmodium berghei (malaria) parasites by ammonium chloride lysis of infected erythrocytes. Nat New Biol. 1971 Oct 27;233(43):260–261. doi: 10.1038/newbio233260a0. [DOI] [PubMed] [Google Scholar]
  20. Mentzer W. C., Jr, Smith W. B., Goldstone J., Shohet S. B. Hereditary stomatocytosis: membrane and metabolism studies. Blood. 1975 Nov;46(5):659–669. [PubMed] [Google Scholar]
  21. Morrow J. S., Speicher D. W., Knowles W. J., Hsu C. J., Marchesi V. T. Identification of functional domains of human erythrocyte spectrin. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6592–6596. doi: 10.1073/pnas.77.11.6592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Neame K. D., Homewood C. A. Alterations in the permeability of mouse erythrocytes infected with the malaria parasite, Plasmodium berghei. Int J Parasitol. 1975 Oct;5(5):537–540. doi: 10.1016/0020-7519(75)90046-6. [DOI] [PubMed] [Google Scholar]
  23. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  24. Roses A. D., Herbstreith M. H., Appel S. H. Membrane protein kinase alteration in Duchenne muscular dystrophy. Nature. 1975 Mar 27;254(5498):350–351. doi: 10.1038/254350a0. [DOI] [PubMed] [Google Scholar]
  25. Sherman I. W. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev. 1979 Dec;43(4):453–495. doi: 10.1128/mr.43.4.453-495.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sherman I. W. Transport of amino acids and nucleic acid precursors in malarial parasites. Bull World Health Organ. 1977;55(2-3):211–225. [PMC free article] [PubMed] [Google Scholar]
  27. Steck T. L., Yu J. Selective solubilization of proteins from red blood cell membranes by protein perturbants. J Supramol Struct. 1973;1(3):220–232. doi: 10.1002/jss.400010307. [DOI] [PubMed] [Google Scholar]
  28. Walsh D. A., Ashby C. D., Gonzalez C., Calkins D., Fischer E. H. Krebs EG: Purification and characterization of a protein inhibitor of adenosine 3',5'-monophosphate-dependent protein kinases. J Biol Chem. 1971 Apr 10;246(7):1977–1985. [PubMed] [Google Scholar]
  29. Williams S. G., Richards W. H. Malaria studies in vitro. I. Techniques for the preparation and culture of leucocyte-free blood-dilution cultures of Plasmodia. Ann Trop Med Parasitol. 1973 Jun;67(2):169–178. [PubMed] [Google Scholar]
  30. Wolfe L. C., Lux S. E. Membrane protein phosphorylation of intact normal and hereditary spherocytic erythrocytes. J Biol Chem. 1978 May 10;253(9):3336–3342. [PubMed] [Google Scholar]
  31. Yoshida N., Nussenzweig R. S., Potocnjak P., Nussenzweig V., Aikawa M. Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasite. Science. 1980 Jan 4;207(4426):71–73. doi: 10.1126/science.6985745. [DOI] [PubMed] [Google Scholar]
  32. Yu J., Fischman D. A., Steck T. L. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct. 1973;1(3):233–248. doi: 10.1002/jss.400010308. [DOI] [PubMed] [Google Scholar]
  33. Yuthavong Y., Wilairat P., Panijpan B., Potiwan C., Beale G. H. Alterations in membrane proteins of mouse erythrocytes infected with different species and strains of malaria parasites. Comp Biochem Physiol B. 1979;63(1):83–85. doi: 10.1016/0305-0491(79)90238-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES