Abstract
Chinese hamster ovary (CHO) cell mutants resistant to the cytotoxic effects of taxol and requiring the drug for normal growth were isolated in a single step. One of these mutant cell lines, Tax-18, fails to divide in the absence of taxol; instead, the cells become larger, rounder, flatter, and multinucleated. Analysis by flow cytometry indicates that during taxol deprivation there is an accumulation of cells in G2 + M phase but that the cells are able to leak through the block in the absence of cell division and further increase their DNA content beyond the tetraploid amount. This interpretation is confirmed by karyotype analysis and by time-lapse studies that show cells rounded for mitosis two to five times longer than in wild-type cultures or in Tax-18 cultures grown in taxol. The cells finally attempt to undergo cytokinesis, fail, and spread out again, but as larger cells than before. Tax-18 has a normal growth rate and morphology when grown in taxol even at concentrations three to five times below the selecting concentration of the drug. The cells, however, have increased sensitivity to microtubule-disrupting drugs such as colcemid, griseofulvin, and D2O. The mutation for taxol auxotrophy behaves recessively in somatic cell hybridization experiments, and the phenotypic reversion rate is approximately 10(-5) in a nonmutagenized population. Both alpha- and beta-tubulin are present in apparently normal amounts and with normal electrophoretic mobilities on two- dimensional gels. The results suggest that Tax-18 lacks a factor necessary for mitosis and that taxol may be able to substitute for this factor.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams M., Warr J. R. Colchicine-resistant mutants of Chlamydomonas reinhardi. Exp Cell Res. 1972;71(2):473–475. doi: 10.1016/0014-4827(72)90319-9. [DOI] [PubMed] [Google Scholar]
- Barlogie B., Spitzer G., Hart J. S., Johnston D. A., Büchner T., Schumann J., Drewinko B. DNA histogram analysis of human hemopoietic cells. Blood. 1976 Aug;48(2):245–258. [PubMed] [Google Scholar]
- Borisy G. G., Olmsted J. B., Marcum J. M., Allen C. Microtubule assembly in vitro. Fed Proc. 1974 Feb;33(2):167–174. [PubMed] [Google Scholar]
- Brinkley B. R., Fuller E. M., Highfield D. P. Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluorescence. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4981–4985. doi: 10.1073/pnas.72.12.4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess J., Northcote D. H. Action of colchicine and heavy water on the polymerization of microtubules in wheat root meristem. J Cell Sci. 1969 Sep;5(2):433–451. doi: 10.1242/jcs.5.2.433. [DOI] [PubMed] [Google Scholar]
- Cabral F., Abraham I., Gottesman M. M. Isolation of a taxol-resistant Chinese hamster ovary cell mutant that has an alteration in alpha-tubulin. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4388–4391. doi: 10.1073/pnas.78.7.4388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cabral F., Abraham I., Gottesman M. M. Revertants of a Chinese hamster ovary cell mutant with an altered beta-tubulin: evidence that the altered tubulin confers both colcemid resistance and temperature sensitivity on the cell. Mol Cell Biol. 1982 Jun;2(6):720–729. doi: 10.1128/mcb.2.6.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cabral F., Sobel M. E., Gottesman M. M. CHO mutants resistant to colchicine, colcemid or griseofulvin have an altered beta-tubulin. Cell. 1980 May;20(1):29–36. doi: 10.1016/0092-8674(80)90231-7. [DOI] [PubMed] [Google Scholar]
- Cabral F., Wible L., Brenner S., Brinkley B. R. Taxol-requiring mutant of Chinese hamster ovary cells with impaired mitotic spindle assembly. J Cell Biol. 1983 Jul;97(1):30–39. doi: 10.1083/jcb.97.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidse L. C., Flach W. Differential binding of methyl benzimidazol-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. J Cell Biol. 1977 Jan;72(1):174–193. doi: 10.1083/jcb.72.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GROSS P. R., SPINDEL W. The inhibition of mitosis by deuterium. Ann N Y Acad Sci. 1960 Nov 25;84:745–754. doi: 10.1111/j.1749-6632.1960.tb39106.x. [DOI] [PubMed] [Google Scholar]
- Gottesman M. M., LeCam A., Bukowski M., Pastan I. Isolation of multiple classes of mutants of CHO cells resistant to cyclic AMP. Somatic Cell Genet. 1980 Jan;6(1):45–61. doi: 10.1007/BF01538695. [DOI] [PubMed] [Google Scholar]
- Keates R. A., Sarangi F., Ling V. Structural and functional alterations in microtubule protein from Chinese hamster ovary cell mutants. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5638–5642. doi: 10.1073/pnas.78.9.5638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemphues K. J., Raff E. C., Raff R. A., Kaufman T. C. Mutation in a testis-specific beta-tubulin in Drosophila: analysis of its effects on meiosis and map location of the gene. Cell. 1980 Sep;21(2):445–451. doi: 10.1016/0092-8674(80)90481-x. [DOI] [PubMed] [Google Scholar]
- Lederberg S., Stetten G. Colcemid sensitivity of fission yeast and the isolation of colcemid-resistant mutants. Science. 1970 Apr 24;168(3930):485–487. doi: 10.1126/science.168.3930.485. [DOI] [PubMed] [Google Scholar]
- Ling V., Aubin J. E., Chase A., Sarangi F. Mutants of Chinese hamster ovary (CHO) cells with altered colcemid-binding affinity. Cell. 1979 Oct;18(2):423–430. doi: 10.1016/0092-8674(79)90061-8. [DOI] [PubMed] [Google Scholar]
- Ling V., Thompson L. H. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol. 1974 Feb;83(1):103–116. doi: 10.1002/jcp.1040830114. [DOI] [PubMed] [Google Scholar]
- Morris N. R., Lai M. H., Oakley C. E. Identification of a gene for alpha-tubulin in Aspergillus nidulans. Cell. 1979 Feb;16(2):437–442. doi: 10.1016/0092-8674(79)90019-9. [DOI] [PubMed] [Google Scholar]
- Oakley B. R., Morris N. R. Nuclear movement is beta--tubulin-dependent in Aspergillus nidulans. Cell. 1980 Jan;19(1):255–262. doi: 10.1016/0092-8674(80)90407-9. [DOI] [PubMed] [Google Scholar]
- Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
- Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheir-Neiss G., Lai M. H., Morris N. R. Identification of a gene for beta-tubulin in Aspergillus nidulans. Cell. 1978 Oct;15(2):639–647. doi: 10.1016/0092-8674(78)90032-6. [DOI] [PubMed] [Google Scholar]
- Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warr J. R., Gibbons D. Further studies on colchicine-resistant mutants of Chlamydomonas reinhardi. Exp Cell Res. 1974 Mar 30;85(1):117–122. doi: 10.1016/0014-4827(74)90220-1. [DOI] [PubMed] [Google Scholar]
- Weber K., Bibring T., Osborn M. Specific visualization of tubulin-containing structures in tissue culture cells by immunofluorescence. Cytoplasmic microtubules, vinblastine-induced paracrystals, and mitotic figures. Exp Cell Res. 1975 Oct 1;95(1):111–120. doi: 10.1016/0014-4827(75)90615-1. [DOI] [PubMed] [Google Scholar]
- Weisenberg R. C. Microtubule formation in vitro in solutions containing low calcium concentrations. Science. 1972 Sep 22;177(4054):1104–1105. doi: 10.1126/science.177.4054.1104. [DOI] [PubMed] [Google Scholar]
- Worton R. G., Duff C. Karyotyping. Methods Enzymol. 1979;58:322–344. doi: 10.1016/s0076-6879(79)58148-8. [DOI] [PubMed] [Google Scholar]